ChatSearch: A dataset and a generative retrieval model for general conversational image retrieval

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zijia Zhao , Longteng Guo , Tongtian Yue , Erdong Hu , Shuai Shao , Zehuan Yuan , Hua Huang , Jing Liu
{"title":"ChatSearch: A dataset and a generative retrieval model for general conversational image retrieval","authors":"Zijia Zhao ,&nbsp;Longteng Guo ,&nbsp;Tongtian Yue ,&nbsp;Erdong Hu ,&nbsp;Shuai Shao ,&nbsp;Zehuan Yuan ,&nbsp;Hua Huang ,&nbsp;Jing Liu","doi":"10.1016/j.patcog.2025.111696","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the task of general conversational image retrieval on open-domain images. The objective is to search for images based on interactive conversations between humans and computers. To advance this task, we curate a dataset called ChatSearch. This dataset includes a <strong>multi-round multimodal conversational context query</strong> for each target image, thereby requiring the retrieval system to find the accurate image from database. Simultaneously, we propose a generative retrieval model named ChatSearcher, which is trained end-to-end to accept/produce interleaved image–text inputs/outputs. ChatSearcher exhibits strong capability in reasoning with multimodal context and can leverage world knowledge to yield visual retrieval results. It demonstrates superior performance on the ChatSearch dataset and also achieves competitive results on other image retrieval tasks and visual conversation tasks. We anticipate that this work will inspire further research on interactive multimodal retrieval systems.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"167 ","pages":"Article 111696"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325003565","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the task of general conversational image retrieval on open-domain images. The objective is to search for images based on interactive conversations between humans and computers. To advance this task, we curate a dataset called ChatSearch. This dataset includes a multi-round multimodal conversational context query for each target image, thereby requiring the retrieval system to find the accurate image from database. Simultaneously, we propose a generative retrieval model named ChatSearcher, which is trained end-to-end to accept/produce interleaved image–text inputs/outputs. ChatSearcher exhibits strong capability in reasoning with multimodal context and can leverage world knowledge to yield visual retrieval results. It demonstrates superior performance on the ChatSearch dataset and also achieves competitive results on other image retrieval tasks and visual conversation tasks. We anticipate that this work will inspire further research on interactive multimodal retrieval systems.
ChatSearch:用于一般会话图像检索的数据集和生成检索模型
在本文中,我们研究了在开放域图像上的一般会话图像检索任务。目标是搜索基于人机交互对话的图像。为了推进这项任务,我们策划了一个名为ChatSearch的数据集。该数据集包括针对每个目标图像的多轮多模态会话上下文查询,从而要求检索系统从数据库中找到准确的图像。同时,我们提出了一个名为ChatSearcher的生成检索模型,该模型经过端到端训练,可以接受/产生交错的图像-文本输入/输出。ChatSearcher展示了强大的多模态上下文推理能力,可以利用世界知识产生视觉检索结果。它在ChatSearch数据集上展示了卓越的性能,并且在其他图像检索任务和视觉会话任务上也取得了具有竞争力的结果。我们期望这一工作将会激发对交互式多模式检索系统的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信