Skyrmion Sliding Switch in a 90 nm-Wide Nanostructured Chiral Magnet

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaodong Wu, Jialiang Jiang, Weiwei Wang, Lingyao Kong, Shouguo Wang, Mingliang Tian, Haifeng Du* and Jin Tang*, 
{"title":"Skyrmion Sliding Switch in a 90 nm-Wide Nanostructured Chiral Magnet","authors":"Yaodong Wu,&nbsp;Jialiang Jiang,&nbsp;Weiwei Wang,&nbsp;Lingyao Kong,&nbsp;Shouguo Wang,&nbsp;Mingliang Tian,&nbsp;Haifeng Du* and Jin Tang*,&nbsp;","doi":"10.1021/acs.nanolett.5c0078110.1021/acs.nanolett.5c00781","DOIUrl":null,"url":null,"abstract":"<p >Magnetic skyrmions, renowned for their fascinating electromagnetic properties, hold the potential for next-generation topological spintronic devices. Recent advancements have unveiled a rich tapestry of 3D topological magnetism. Nevertheless, the practical application of 3D topological magnetism in the development of topological spintronic devices remains a challenge. Here, we showcase the experimental utilization of 3D topological magnetism through the exploitation of skyrmion-edge attractive interactions in 90 nm-wide confined chiral FeGe and CoZnMn magnetic nanostructures. These attractive interactions result in two degenerate equilibrium positions that can be naturally interpreted as binary bits for a skyrmion sliding switch. Our theory and simulation reveal current-driven spiral motions of skyrmions, governed by the anisotropic gradient of the potential landscape. Our experiments validate the theory that predicts a tunable threshold current density via magnetic field and temperature modulation of the energy barrier. Our results offer an approach for implementing universal on–off switch functions in 3D topological spintronic devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 17","pages":"7012–7019 7012–7019"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00781","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions, renowned for their fascinating electromagnetic properties, hold the potential for next-generation topological spintronic devices. Recent advancements have unveiled a rich tapestry of 3D topological magnetism. Nevertheless, the practical application of 3D topological magnetism in the development of topological spintronic devices remains a challenge. Here, we showcase the experimental utilization of 3D topological magnetism through the exploitation of skyrmion-edge attractive interactions in 90 nm-wide confined chiral FeGe and CoZnMn magnetic nanostructures. These attractive interactions result in two degenerate equilibrium positions that can be naturally interpreted as binary bits for a skyrmion sliding switch. Our theory and simulation reveal current-driven spiral motions of skyrmions, governed by the anisotropic gradient of the potential landscape. Our experiments validate the theory that predicts a tunable threshold current density via magnetic field and temperature modulation of the energy barrier. Our results offer an approach for implementing universal on–off switch functions in 3D topological spintronic devices.

Abstract Image

90纳米宽纳米结构手性磁体中的Skyrmion滑动开关
磁skyrmions以其迷人的电磁特性而闻名,具有下一代拓扑自旋电子器件的潜力。最近的进展已经揭开了丰富的三维拓扑磁性挂毯。然而,三维拓扑磁性在拓扑自旋电子器件开发中的实际应用仍然是一个挑战。在这里,我们通过在90 nm宽的受限手性FeGe和CoZnMn磁性纳米结构中利用skyrmim -edge吸引相互作用,展示了三维拓扑磁性的实验利用。这些吸引的相互作用导致两个退化的平衡位置,可以自然地解释为skyrmion滑动开关的二进制位。我们的理论和模拟揭示了电流驱动的天幕螺旋运动,由电位景观的各向异性梯度控制。我们的实验验证了通过磁场和温度调制能量势垒来预测可调谐阈值电流密度的理论。我们的研究结果为实现三维拓扑自旋电子器件的通用开关功能提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信