{"title":"Suppression of the Prostaglandin I2-Type 1 Interferon Axis Induces Extramedullary Hematopoiesis to Promote Cardiac Repair After Myocardial Infarction.","authors":"Huizhen Lv,Chenchen Wang,Zening Liu,Meixi Quan,Kan Li,Fanglin Gou,Xuelian Shi,Qian Liu,Ying Yu,Ping Zhu,Hui Cheng,Tao Cheng,Ding Ai","doi":"10.1161/circulationaha.124.069420","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nImmune cells are closely associated with all processes of cardiac repair after myocardial infarction (MI), including the initiation, development, and resolution of inflammation. Spleen extramedullary hematopoiesis (EMH) serves as a crucial source of emergency mature blood cells that are generated through the self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs). However, how EMH responds to MI and the role of EMH in cardiac repair after MI remains unclear.\r\n\r\nMETHODS\r\nTo assess the role of spleen EMH in MI, a Tcf21CreER Scfflox/flox MI mouse model with inhibited EMH was constructed. GFP+ (green fluorescent protein) hematopoietic stem cells were sorted from eGFP (enhanced green fluorescent protein) mouse spleen by flow cytometry and injected into Tcf21CreER Scfflox/flox mice to test the sources of local inflammatory cells during MI. Using highly specific liquid chromatography-tandem mass spectrometry and single-cell RNA sequencing, we analyzed the lipidomic profile of arachidonic acid metabolites and the transcriptomes of HSPCs in the spleen after MI.\r\n\r\nRESULTS\r\nWe found that MI enhanced EMH, as reflected by the increase in spleen weight and volume and the number of HSPCs in the spleen. The lack of EMH in Scf-deficient mice exacerbated tissue injury after MI. Analysis of the transcriptome of spleen HSPCs after MI revealed that the type 1 interferon pathway was substantially inhibited in hematopoietic stem cell/multipotent progenitor subclusters, and the absence of type 1 interferon signaling enhanced the MI-induced spleen EMH. Lipidomics analysis revealed that prostaglandin I2 (PGI2) was markedly reduced in the spleen. PGI2 suppressed MI-induced EMH through a PGI2 receptor (IP)-cyclic adenosine monophosphate-453p-SP1 cascade in spleen HSPCs. Hematopoietic cell-specific IP-deficient mice exhibited enhanced EMH and improved cardiac recovery after MI.\r\n\r\nCONCLUSIONS\r\nTogether, our findings revealed that a PGI2-IFN axis was involved in spleen EMH after MI, providing new mechanistic insights into spleen EMH after MI and offering a new therapeutic target for treating ischemic cardiac injury.","PeriodicalId":10331,"journal":{"name":"Circulation","volume":"36 1","pages":""},"PeriodicalIF":35.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circulationaha.124.069420","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Immune cells are closely associated with all processes of cardiac repair after myocardial infarction (MI), including the initiation, development, and resolution of inflammation. Spleen extramedullary hematopoiesis (EMH) serves as a crucial source of emergency mature blood cells that are generated through the self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs). However, how EMH responds to MI and the role of EMH in cardiac repair after MI remains unclear.
METHODS
To assess the role of spleen EMH in MI, a Tcf21CreER Scfflox/flox MI mouse model with inhibited EMH was constructed. GFP+ (green fluorescent protein) hematopoietic stem cells were sorted from eGFP (enhanced green fluorescent protein) mouse spleen by flow cytometry and injected into Tcf21CreER Scfflox/flox mice to test the sources of local inflammatory cells during MI. Using highly specific liquid chromatography-tandem mass spectrometry and single-cell RNA sequencing, we analyzed the lipidomic profile of arachidonic acid metabolites and the transcriptomes of HSPCs in the spleen after MI.
RESULTS
We found that MI enhanced EMH, as reflected by the increase in spleen weight and volume and the number of HSPCs in the spleen. The lack of EMH in Scf-deficient mice exacerbated tissue injury after MI. Analysis of the transcriptome of spleen HSPCs after MI revealed that the type 1 interferon pathway was substantially inhibited in hematopoietic stem cell/multipotent progenitor subclusters, and the absence of type 1 interferon signaling enhanced the MI-induced spleen EMH. Lipidomics analysis revealed that prostaglandin I2 (PGI2) was markedly reduced in the spleen. PGI2 suppressed MI-induced EMH through a PGI2 receptor (IP)-cyclic adenosine monophosphate-453p-SP1 cascade in spleen HSPCs. Hematopoietic cell-specific IP-deficient mice exhibited enhanced EMH and improved cardiac recovery after MI.
CONCLUSIONS
Together, our findings revealed that a PGI2-IFN axis was involved in spleen EMH after MI, providing new mechanistic insights into spleen EMH after MI and offering a new therapeutic target for treating ischemic cardiac injury.
期刊介绍:
Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.