{"title":"CO2 electroreduction in a bubble-plate electrolyzer: A new route to scale up","authors":"Qing Hu, Yujing Liu, Zhihang Wei, Linjie Chao, Lin Luo, Zhenmin Cheng","doi":"10.1002/aic.18875","DOIUrl":null,"url":null,"abstract":"CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) provides a promising pathway for carbon utilization, but achieving high single-pass conversion is hindered by mass transfer limitations and the scalability constraints of conventional reactor designs. This work introduces a novel bubble-plate electrolyzer (BPE) that incorporates cobalt phthalocyanine (CoPc) catalysts immobilized on carbon paper substrates. This design creates abundant dynamic triple-phase interfaces, enhancing mass transfer and reaction kinetics. A gas-facing catalyst configuration optimizes bubble-catalyst interactions, resulting in exceptional catalytic performance and enabling scalable reactor design. A multi-layer BPE architecture achieves a remarkable single-pass CO<sub>2</sub> conversion of 28.74%, a substantial increase from the single-layer 6.11%, while maintaining excellent kinetic similarity and operational simplicity. Mechanistic studies reveal that a synergistic interplay between current density and CO<sub>2</sub> concentration governs CO<sub>2</sub> reduction within the BPE, where the unique gas flow configuration optimizes reactant residence time. This innovative BPE design provides a compelling strategy for practical and scalable carbon conversion technologies.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"43 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18875","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 electroreduction (CO2ER) provides a promising pathway for carbon utilization, but achieving high single-pass conversion is hindered by mass transfer limitations and the scalability constraints of conventional reactor designs. This work introduces a novel bubble-plate electrolyzer (BPE) that incorporates cobalt phthalocyanine (CoPc) catalysts immobilized on carbon paper substrates. This design creates abundant dynamic triple-phase interfaces, enhancing mass transfer and reaction kinetics. A gas-facing catalyst configuration optimizes bubble-catalyst interactions, resulting in exceptional catalytic performance and enabling scalable reactor design. A multi-layer BPE architecture achieves a remarkable single-pass CO2 conversion of 28.74%, a substantial increase from the single-layer 6.11%, while maintaining excellent kinetic similarity and operational simplicity. Mechanistic studies reveal that a synergistic interplay between current density and CO2 concentration governs CO2 reduction within the BPE, where the unique gas flow configuration optimizes reactant residence time. This innovative BPE design provides a compelling strategy for practical and scalable carbon conversion technologies.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.