Yao Pan, Xudong Yang, Zhe Wang, Yu Han, Junxi Guo, Ran Yin, Shanyuan Niu, Dan Shan, Lili Ding, Jinfeng Wang, Hongqiang Ren
{"title":"A Nature-Inspired Metal-Free Electrocatalyst towards Efficient Electron Transfer and Robust Cascade Oxygen Reduction for Wastewater Treatment","authors":"Yao Pan, Xudong Yang, Zhe Wang, Yu Han, Junxi Guo, Ran Yin, Shanyuan Niu, Dan Shan, Lili Ding, Jinfeng Wang, Hongqiang Ren","doi":"10.1016/j.watres.2025.123747","DOIUrl":null,"url":null,"abstract":"The pressing demand for removing high-risk emerging contaminants from wastewater calls for tailored treatment strategies, for which heterogeneous electrocatalysis induced by cascade oxygen reduction reaction (ORR) holds considerable potential. This process, however, suffers from poor interfacial electron transfer and discounted performance in non-acidic conditions. Inspired by the electron respiration chain of cells, a metal-free, quinone-based catalyst (PBth-BQ) was innovatively designed and synthesized. With excellent redox reversibility over 50 cycles and no risk of metal leaching, it boosted the direct electron transfer by 110% compared to the bare graphite substrate and facilitated cascade ORR to generate ·OH for effective contaminant abatement in the pH range of 3-13. Among them, pH 8 demonstrated the best performance, which is suitable for wastewater treatment. In particular, PBth-BQ performed well as both anodic and cathodic electrodes in azithromycin mineralization with different oxygen donors, verified by the <em>in-situ</em> mass spectrum. Considering the abundance of quinone-like structures in oxidized carbon materials, this biomimetic design may inspire the further exploration of cheap and efficient electrocatalysts for wastewater treatment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123747","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pressing demand for removing high-risk emerging contaminants from wastewater calls for tailored treatment strategies, for which heterogeneous electrocatalysis induced by cascade oxygen reduction reaction (ORR) holds considerable potential. This process, however, suffers from poor interfacial electron transfer and discounted performance in non-acidic conditions. Inspired by the electron respiration chain of cells, a metal-free, quinone-based catalyst (PBth-BQ) was innovatively designed and synthesized. With excellent redox reversibility over 50 cycles and no risk of metal leaching, it boosted the direct electron transfer by 110% compared to the bare graphite substrate and facilitated cascade ORR to generate ·OH for effective contaminant abatement in the pH range of 3-13. Among them, pH 8 demonstrated the best performance, which is suitable for wastewater treatment. In particular, PBth-BQ performed well as both anodic and cathodic electrodes in azithromycin mineralization with different oxygen donors, verified by the in-situ mass spectrum. Considering the abundance of quinone-like structures in oxidized carbon materials, this biomimetic design may inspire the further exploration of cheap and efficient electrocatalysts for wastewater treatment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.