Stephen J.K. O'Neill, Minoru Ashizawa, Alan M. McLean, Ruben Ruiz-Mateos Serrano, Tokihiko Shimura, Masakazu Agetsuma, Motosuke Tsutsumi, Tomomi Nemoto, Christopher D. J. Parmenter, Jade A. McCune, George G. Malliaras, Naoji Matsuhisa, Oren A. Scherman
{"title":"Supramolecular Conductive Hydrogels With Homogeneous Ionic and Electronic Transport","authors":"Stephen J.K. O'Neill, Minoru Ashizawa, Alan M. McLean, Ruben Ruiz-Mateos Serrano, Tokihiko Shimura, Masakazu Agetsuma, Motosuke Tsutsumi, Tomomi Nemoto, Christopher D. J. Parmenter, Jade A. McCune, George G. Malliaras, Naoji Matsuhisa, Oren A. Scherman","doi":"10.1002/adma.202415687","DOIUrl":null,"url":null,"abstract":"Mechanically resilient hydrogels with ion-electron mixed transport properties effectively bridge biology with electronics. An ideal bioelectronic interface can be realized through introducing electronically conductive polymers into supramolecular hydrogels. However, inhomogeneous morphologies of conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have limited mechanical properties and ion-electron interactions. Here, supramolecular conductive hydrogels that possess homogeneous ionic and electronic transport are achieved. The materials demonstrate high toughness (620 kJ m<sup>−3</sup>), stretchability (>1000%), softness (10.5 kPa), and conductivity (5.8 S cm<sup>−1</sup>), which surpasses commonly used inhomogeneous PEDOT:PSS-based hydrogels. The homogeneous network leads to higher charge injection capacitance and lower skin impedance compared to commercial electrodes or commonly used inhomogeneous PEDOT:PSS conducting networks. This significant advance arises from the homogeneous incorporation of the hydrophilic self-doped conducting polymer S-PEDOT, which has polymerized within a supramolecular polymer network template mediated by high-binding affinity host-guest crosslinks. Furthermore, the compatibility of S-PEDOT with hydrophilic secondary networks enables the realization of fully dryable and reswellable electronic devices, facilitating reusability and improving their ease of handling. It is anticipated that achieving such material architectures will offer a promising new direction in future synthesis and implementation of conductive hydrogels in the field of bioelectronics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"74 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415687","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanically resilient hydrogels with ion-electron mixed transport properties effectively bridge biology with electronics. An ideal bioelectronic interface can be realized through introducing electronically conductive polymers into supramolecular hydrogels. However, inhomogeneous morphologies of conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have limited mechanical properties and ion-electron interactions. Here, supramolecular conductive hydrogels that possess homogeneous ionic and electronic transport are achieved. The materials demonstrate high toughness (620 kJ m−3), stretchability (>1000%), softness (10.5 kPa), and conductivity (5.8 S cm−1), which surpasses commonly used inhomogeneous PEDOT:PSS-based hydrogels. The homogeneous network leads to higher charge injection capacitance and lower skin impedance compared to commercial electrodes or commonly used inhomogeneous PEDOT:PSS conducting networks. This significant advance arises from the homogeneous incorporation of the hydrophilic self-doped conducting polymer S-PEDOT, which has polymerized within a supramolecular polymer network template mediated by high-binding affinity host-guest crosslinks. Furthermore, the compatibility of S-PEDOT with hydrophilic secondary networks enables the realization of fully dryable and reswellable electronic devices, facilitating reusability and improving their ease of handling. It is anticipated that achieving such material architectures will offer a promising new direction in future synthesis and implementation of conductive hydrogels in the field of bioelectronics.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.