Conjugated Polyelectrolytes/Sucrose-Doped Hydroxyl-Rich Carbon Nitride Heterojunctions for Photocatalytic Hydrogen Evolution: Morphology Control, Interfacial Modulation, and Energy Band Engineering

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li Yang, Wei Zhou, Mingsong Dou, Xue Yue, Yongzheng Hu, Taiping Lu, Yu He, Yingying Du, Anning Zhu, Haokai Yang, Shaolin Lu, Xudong Chen
{"title":"Conjugated Polyelectrolytes/Sucrose-Doped Hydroxyl-Rich Carbon Nitride Heterojunctions for Photocatalytic Hydrogen Evolution: Morphology Control, Interfacial Modulation, and Energy Band Engineering","authors":"Li Yang, Wei Zhou, Mingsong Dou, Xue Yue, Yongzheng Hu, Taiping Lu, Yu He, Yingying Du, Anning Zhu, Haokai Yang, Shaolin Lu, Xudong Chen","doi":"10.1002/adfm.202500415","DOIUrl":null,"url":null,"abstract":"Herein, a novel, ecofriendly and facile strategy have been introduced to fabricate conjugated polyelectrolytes (CPEs)-assisted hydroxylated CN (CNOH) heterojunctions for enhancing photocatalytic hydrogen evolution (PHE). This work synthesizes CNOH nanosheets utilizing a urea-sucrose aqueous solution as the precursor. Subsequently, this work incorporates CPEs, including a donor–donor (D–D) cationic conjugated polyelectrolyte (PFNBr) and an anionic donor–acceptor (D–A) CPEs (PCP-2F-Li), to respectively exfoliate CNOHx into a folded, porous lamellar nanostructure with dispersed nanofragments on the CNOH nanosheets, where the PFNBr or PCP-2F-Li can be uniformly dispersed to form type-II y%PFN/CNOHx and y%PCP/CNOHx heterojunctions. Optimally, 3%PFN/CNOH0.5 and 1%PCP/CNOH1 heterojunctions (1.5 wt% Pt) respectively demonstrate PHE rates of 22.75 and 24.01 mmol g⁻¹ h⁻¹ under visible-light irradiation (600 mW cm⁻<sup>2</sup>), respectively outperforming that of pristine bulk carbon nitride (BulkCN) by 13.87 and 14.64 times. The remarkable enhancement in PHE performance is attributed to the well-matched energy levels between CPEs and CNOH, increased specific surface area facilitated by CPEs-promoted exfoliation, the broadened visible light absorption due to sucrose and CPEs doping, strengthened interfacial interactions by hydrogen bonding and π–π stacking, and improved hydrophilicity conferred by sucrose doping on CNOH. This work presents a novel design strategy for CPEs/CNOH heterojunctions by CPEs-promoted effect, thus advancing the development of efficient sunlight-driven chemical reactions.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"46 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202500415","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel, ecofriendly and facile strategy have been introduced to fabricate conjugated polyelectrolytes (CPEs)-assisted hydroxylated CN (CNOH) heterojunctions for enhancing photocatalytic hydrogen evolution (PHE). This work synthesizes CNOH nanosheets utilizing a urea-sucrose aqueous solution as the precursor. Subsequently, this work incorporates CPEs, including a donor–donor (D–D) cationic conjugated polyelectrolyte (PFNBr) and an anionic donor–acceptor (D–A) CPEs (PCP-2F-Li), to respectively exfoliate CNOHx into a folded, porous lamellar nanostructure with dispersed nanofragments on the CNOH nanosheets, where the PFNBr or PCP-2F-Li can be uniformly dispersed to form type-II y%PFN/CNOHx and y%PCP/CNOHx heterojunctions. Optimally, 3%PFN/CNOH0.5 and 1%PCP/CNOH1 heterojunctions (1.5 wt% Pt) respectively demonstrate PHE rates of 22.75 and 24.01 mmol g⁻¹ h⁻¹ under visible-light irradiation (600 mW cm⁻2), respectively outperforming that of pristine bulk carbon nitride (BulkCN) by 13.87 and 14.64 times. The remarkable enhancement in PHE performance is attributed to the well-matched energy levels between CPEs and CNOH, increased specific surface area facilitated by CPEs-promoted exfoliation, the broadened visible light absorption due to sucrose and CPEs doping, strengthened interfacial interactions by hydrogen bonding and π–π stacking, and improved hydrophilicity conferred by sucrose doping on CNOH. This work presents a novel design strategy for CPEs/CNOH heterojunctions by CPEs-promoted effect, thus advancing the development of efficient sunlight-driven chemical reactions.

Abstract Image

用于光催化析氢的共轭聚电解质/蔗糖掺杂富羟基氮化碳异质结:形态控制、界面调制和能带工程
本文介绍了一种新型的、生态友好的、简单的策略来制备共轭聚电解质(cpe)辅助羟基化CN (CNOH)异质结,以增强光催化析氢(PHE)。本研究利用尿素-蔗糖水溶液作为前驱体合成了CNOH纳米片。随后,本研究结合了CPEs,包括供体-供体(D-D)阳离子共轭聚电解质(PFNBr)和阴离子供体-受体(D-A) CPEs (PCP- 2f - li),分别将CNOH剥离成折叠的多孔片层状纳米结构,并在CNOH纳米片上分散纳米碎片,其中PFNBr或PCP- 2f - li可以均匀分散形成ii型y%PFN/CNOHx和y%PCP/CNOHx异质结。最理想的是,3%PFN/CNOH0.5和1%PCP/CNOH1异质结(1.5% wt% Pt)在可见光照射(600 mW cm毒血症)下的PHE率分别为22.75和24.01 mmol g⁻¹h⁻¹,分别比原始块状氮化碳(BulkCN)高13.87倍和14.64倍。PHE性能的显著提高是由于cpe和CNOH之间的能级匹配良好,cpe促进的剥离促进了比表面积的增加,蔗糖和cpe掺杂增加了可见光吸收,氢键和π -π堆积增强了界面相互作用,以及蔗糖掺杂提高了CNOH的亲水性。本研究提出了一种利用CPEs促进效应设计CPEs/CNOH异质结的新策略,从而推动了高效阳光驱动化学反应的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信