Transcriptional responses of Mediterranean mussels (Mytilus galloprovincialis) under the 2022 Marine Heatwave: a trade-off of physiological regulation between metabolism, stress response, and shell biomineralization in a mixed exposure scenario
{"title":"Transcriptional responses of Mediterranean mussels (Mytilus galloprovincialis) under the 2022 Marine Heatwave: a trade-off of physiological regulation between metabolism, stress response, and shell biomineralization in a mixed exposure scenario","authors":"Letizia Iuffrida , Silvia Franzellitti","doi":"10.1016/j.envpol.2025.126328","DOIUrl":null,"url":null,"abstract":"<div><div>There has been a notable increase in occurrence and intensity of marine heatwaves (MHWs) over the past decades, with a consequent remarkable risk to vulnerable species as marine bivalves. This study examines the responses of farmed <em>Mytilus galloprovincialis</em> to the 2022 MHW that impacted the Northwestern (NW) Adriatic Sea. Expression of key transcripts involved in functions of digestive glands and mantles were investigated to explore the putative acclimatory processes contributing to mussel fitness. The 2022 MHW was characterized by persistent sea temperature anomalies, elevated salinity, and dramatically low chlorophyll-a levels. Despite the temporal trends of pH and the extreme seawater temperatures reached in July and August, the carbonate system never reached the undersaturation state, being favourable for bivalve biomineralization. Transcriptional profiles in digestive glands and mantles displayed a two-step temporal response. In digestive glands, metabolism and lysosomal response functional categories showed an initial decrease (late May), and a recovery in late August. Antioxidant and cytoprotective related gene products showed a February to August increased expression, with strong up-regulations in August. In mantles, transcripts involved in shell biomineralization were prompted in the initial stage of the MHW, likely to withstand the abrupt changes of seawater parameters and to maintain bivalve growth. At high MHW intensities, energy was diverted towards the strong stress response activation in digestive glands, with a relative decrease of mRNA levels for shell biomineralization transcripts. Results showed that a trade-off between core physiological processes may contribute to the acclimatory response of mussels to cope with the adverse conditions of the 2022 MHW in the NW Adriatic Sea.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"375 ","pages":"Article 126328"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125007018","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There has been a notable increase in occurrence and intensity of marine heatwaves (MHWs) over the past decades, with a consequent remarkable risk to vulnerable species as marine bivalves. This study examines the responses of farmed Mytilus galloprovincialis to the 2022 MHW that impacted the Northwestern (NW) Adriatic Sea. Expression of key transcripts involved in functions of digestive glands and mantles were investigated to explore the putative acclimatory processes contributing to mussel fitness. The 2022 MHW was characterized by persistent sea temperature anomalies, elevated salinity, and dramatically low chlorophyll-a levels. Despite the temporal trends of pH and the extreme seawater temperatures reached in July and August, the carbonate system never reached the undersaturation state, being favourable for bivalve biomineralization. Transcriptional profiles in digestive glands and mantles displayed a two-step temporal response. In digestive glands, metabolism and lysosomal response functional categories showed an initial decrease (late May), and a recovery in late August. Antioxidant and cytoprotective related gene products showed a February to August increased expression, with strong up-regulations in August. In mantles, transcripts involved in shell biomineralization were prompted in the initial stage of the MHW, likely to withstand the abrupt changes of seawater parameters and to maintain bivalve growth. At high MHW intensities, energy was diverted towards the strong stress response activation in digestive glands, with a relative decrease of mRNA levels for shell biomineralization transcripts. Results showed that a trade-off between core physiological processes may contribute to the acclimatory response of mussels to cope with the adverse conditions of the 2022 MHW in the NW Adriatic Sea.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.