Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang
{"title":"Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution","authors":"Bingzhi Lin, Feng Xing, Liwei Su, Kekuan Wang, Yulan Liu, Diming Zhang, Xusan Yang, Huijun Tan, Zhijing Zhu, Depeng Wang","doi":"10.1038/s41377-025-01842-w","DOIUrl":null,"url":null,"abstract":"<p>Light-field imaging has wide applications in various domains, including microscale life science imaging, mesoscale neuroimaging, and macroscale fluid dynamics imaging. The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing, however, current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale. Considering the multiscale imaging capacity of light-field technique, a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging. Unfortunately, to our knowledge, no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale, mesoscale, and macroscale. To fill this gap, we present a real-time and universal network (RTU-Net) to reconstruct high-resolution light-field images at any scale. RTU-Net, as the first network that works over multiscale light-field image reconstruction, employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability. We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images, including microscale tubulin and mitochondrion dataset, mesoscale synthetic mouse neuro dataset, and macroscale light-field particle imaging velocimetry dataset. The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300 μm × 300 μm × 12 μm to 25 mm × 25 mm × 25 mm, and demonstrated higher resolution when compared with recently reported light-field reconstruction networks. The high-resolution, strong robustness, high efficiency, and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"22 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01842-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Light-field imaging has wide applications in various domains, including microscale life science imaging, mesoscale neuroimaging, and macroscale fluid dynamics imaging. The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing, however, current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale. Considering the multiscale imaging capacity of light-field technique, a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging. Unfortunately, to our knowledge, no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale, mesoscale, and macroscale. To fill this gap, we present a real-time and universal network (RTU-Net) to reconstruct high-resolution light-field images at any scale. RTU-Net, as the first network that works over multiscale light-field image reconstruction, employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability. We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images, including microscale tubulin and mitochondrion dataset, mesoscale synthetic mouse neuro dataset, and macroscale light-field particle imaging velocimetry dataset. The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300 μm × 300 μm × 12 μm to 25 mm × 25 mm × 25 mm, and demonstrated higher resolution when compared with recently reported light-field reconstruction networks. The high-resolution, strong robustness, high efficiency, and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging.