Lattice Water Deprotonation Enables Potassium-Ion Chemistries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huan Xu, Nanzhong Wu, Dr. Bifa Ji, Jinghua Cai, Dr. Wenjiao Yao, Zihang Wang, Dr. Yatian Zhang, Dr. Xinyuan Zhang, Dr. Shu Guo, Dr. Xiaolong Zhou, Dr. Pinit Kidkhunthod, Dr. Yongping Zheng, Dr. Prof. Yongbing Tang
{"title":"Lattice Water Deprotonation Enables Potassium-Ion Chemistries","authors":"Huan Xu,&nbsp;Nanzhong Wu,&nbsp;Dr. Bifa Ji,&nbsp;Jinghua Cai,&nbsp;Dr. Wenjiao Yao,&nbsp;Zihang Wang,&nbsp;Dr. Yatian Zhang,&nbsp;Dr. Xinyuan Zhang,&nbsp;Dr. Shu Guo,&nbsp;Dr. Xiaolong Zhou,&nbsp;Dr. Pinit Kidkhunthod,&nbsp;Dr. Yongping Zheng,&nbsp;Dr. Prof. Yongbing Tang","doi":"10.1002/anie.202503904","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical water splitting is a key process in clean energy applications and usually occurs on the surface of catalytic materials. Here, we report the anomalous partial water splitting, namely, water deprotonation behavior within the lattice of hydrated materials modeled by Fe<sub>1-</sub><i><sub>x</sub></i>Mg<i><sub>x</sub></i>(C<sub>2</sub>O<sub>4</sub>) • 2H<sub>2</sub>O (<i>x</i> ≈ 0.25–0.43), which triggers the otherwise inactive framework into an excellent cathode material for potassium ion storage. Density functional theory suggests that redox-active lattice Fe sites can split crystal water into hydroxyls and hydrogens in the initial charge, rendering thereafter reversible K-ion chemistries, whereas lattice Mg sites are inactive but stabilize the entire framework. Our experiments validated the as-predicted electrochemical behavior, and the isotopic tracing unambiguously confirmed the hydrogen evolution from crystal water. This intriguing “water deprotonation in lattice” phenomenon may open a new path for the design of cathode materials by electrolysis-assisted electrochemistry.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 27","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting is a key process in clean energy applications and usually occurs on the surface of catalytic materials. Here, we report the anomalous partial water splitting, namely, water deprotonation behavior within the lattice of hydrated materials modeled by Fe1-xMgx(C2O4) • 2H2O (x ≈ 0.25–0.43), which triggers the otherwise inactive framework into an excellent cathode material for potassium ion storage. Density functional theory suggests that redox-active lattice Fe sites can split crystal water into hydroxyls and hydrogens in the initial charge, rendering thereafter reversible K-ion chemistries, whereas lattice Mg sites are inactive but stabilize the entire framework. Our experiments validated the as-predicted electrochemical behavior, and the isotopic tracing unambiguously confirmed the hydrogen evolution from crystal water. This intriguing “water deprotonation in lattice” phenomenon may open a new path for the design of cathode materials by electrolysis-assisted electrochemistry.

晶格水去质子化使钾离子化学成为可能
电化学水分解是清洁能源应用中的一个关键过程,通常发生在催化材料表面。本文报道了Fe1‐xMgx(C2O4)•2H2O (x≈0.25‐0.43)模拟的水合材料晶格内的异常部分水分裂,即水去质子化行为,这触发了原本不活跃的框架成为钾离子储存的优秀阴极材料。密度泛函理论表明,氧化还原活性的晶格Fe位点可以在初始电荷中将结晶水分解成羟基和氢,从而产生可逆的K离子化学反应,而晶格Mg位点则不活跃,但可以稳定整个框架。我们的实验验证了预测的电化学行为,同位素示踪明确地证实了结晶水的氢演化。这种有趣的“晶格中水去质子化”现象可能为电解辅助电化学设计阴极材料开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信