{"title":"Euclidean AdS wormholes and gravitational instantons in the Einstein-Skyrme theory","authors":"Fabrizio Canfora, Cristóbal Corral, Borja Diez","doi":"10.1103/physrevd.111.084072","DOIUrl":null,"url":null,"abstract":"Euclidean anti–de Sitter (AdS) wormholes provide a natural setup for studying the anti–de Sitter/conformal field theory (AdS/CFT) correspondence with multiple boundaries. However, from a bottom-up perspective, they cannot be embedded in the four-dimensional Einstein-AdS-Maxwell theory if these boundaries have positive curvature. Nevertheless, Maldacena and Maoz showed that this obstruction could be circumvented by introducing merons in the four-dimensional Einstein-AdS-Yang-Mills theory. In this work, we show that Euclidean-AdS wormholes also exist in the four-dimensional Einstein-AdS-Skyrme theory, whose matter sector possesses a nontrivial baryonic charge. We compute its free energy and show that it does not depend on the integration constants whatsoever, resembling topological solitons. Additionally, we obtain its holographic stress tensor and show that it vanishes, allowing us to interpret this configuration as a holographic Bogomol’nyi-Prasad-Sommerfield (BPS) state. Other topologically nontrivial ground states in Einstein-Skyrme theory are found, such as gravitational instantons, representing the homotopically inequivalent vacua of the theory. We find that they develop Hawking-Page phase transitions above a critical temperature. Some of these solutions are periodic in Euclidean time, representing the gravitational analog of calorons in Yang-Mills theory. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.084072","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Euclidean anti–de Sitter (AdS) wormholes provide a natural setup for studying the anti–de Sitter/conformal field theory (AdS/CFT) correspondence with multiple boundaries. However, from a bottom-up perspective, they cannot be embedded in the four-dimensional Einstein-AdS-Maxwell theory if these boundaries have positive curvature. Nevertheless, Maldacena and Maoz showed that this obstruction could be circumvented by introducing merons in the four-dimensional Einstein-AdS-Yang-Mills theory. In this work, we show that Euclidean-AdS wormholes also exist in the four-dimensional Einstein-AdS-Skyrme theory, whose matter sector possesses a nontrivial baryonic charge. We compute its free energy and show that it does not depend on the integration constants whatsoever, resembling topological solitons. Additionally, we obtain its holographic stress tensor and show that it vanishes, allowing us to interpret this configuration as a holographic Bogomol’nyi-Prasad-Sommerfield (BPS) state. Other topologically nontrivial ground states in Einstein-Skyrme theory are found, such as gravitational instantons, representing the homotopically inequivalent vacua of the theory. We find that they develop Hawking-Page phase transitions above a critical temperature. Some of these solutions are periodic in Euclidean time, representing the gravitational analog of calorons in Yang-Mills theory. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.