Tamires Pereira Dutra, Nicolas Robitaille, Khaled Altabtbaei, Shareef M. Dabdoub, Purnima S. Kumar
{"title":"Community dynamics during de novo colonization of the nascent peri-implant sulcus","authors":"Tamires Pereira Dutra, Nicolas Robitaille, Khaled Altabtbaei, Shareef M. Dabdoub, Purnima S. Kumar","doi":"10.1038/s41368-025-00367-7","DOIUrl":null,"url":null,"abstract":"<p>Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"35 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00367-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.