{"title":"Dynamic volume compensation realizing Ah-level all-solid-state silicon-sulfur batteries","authors":"Zhaotong Hu, Panyu Gao, Shunlong Ju, Yingxue Li, Tengfei Zhang, Chengjie Lu, Tao Huang, Peng Liu, Yingtong Lv, Miao Guo, Wei Zhang, Weiming Teng, Guanglin Xia, Songqiang Zhu, Dalin Sun, Xuebin Yu","doi":"10.1038/s41467-025-59224-0","DOIUrl":null,"url":null,"abstract":"<p>State-of-the-art lithium-ion batteries incorporating silicon negative electrodes face significant challenges due to the volume fluctuations that occurs during cycling, leading to enormous internal stress and eventual battery failure. Notably, existing research predominantly focuses on material-level solutions, with limited exploration of effective cell design strategies. Herein, we present a systematic implementation of a Stress-Neutralized Si-S full cell design that leverages the natural volume change dynamics of silicon and sulfur electrodes. Our approach goes beyond inherent stress compensation by employing a dynamic volume compensation strategy. This strategy involves real-time stress monitoring and precise structural optimization to achieve full utilization of the active mass (100%) and to mitigate the residual stresses and heterogeneity that naturally arise during cycling. A quantitative analysis proved the effectiveness of this approach, showcasing high specific energy (525 Wh kg<sup>−1</sup>) based on total battery mass, long cycling stability (500 cycles), large areal current density (25.12 mA cm<sup>−2</sup>), and high capacity (1.24 Ah) in Si-S system. This approach systematically enhances the naturally occurring stress-compensation phenomenon, addressing the residual stresses and optimizing electrode behavior for high-performance solid-state batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"43 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59224-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
State-of-the-art lithium-ion batteries incorporating silicon negative electrodes face significant challenges due to the volume fluctuations that occurs during cycling, leading to enormous internal stress and eventual battery failure. Notably, existing research predominantly focuses on material-level solutions, with limited exploration of effective cell design strategies. Herein, we present a systematic implementation of a Stress-Neutralized Si-S full cell design that leverages the natural volume change dynamics of silicon and sulfur electrodes. Our approach goes beyond inherent stress compensation by employing a dynamic volume compensation strategy. This strategy involves real-time stress monitoring and precise structural optimization to achieve full utilization of the active mass (100%) and to mitigate the residual stresses and heterogeneity that naturally arise during cycling. A quantitative analysis proved the effectiveness of this approach, showcasing high specific energy (525 Wh kg−1) based on total battery mass, long cycling stability (500 cycles), large areal current density (25.12 mA cm−2), and high capacity (1.24 Ah) in Si-S system. This approach systematically enhances the naturally occurring stress-compensation phenomenon, addressing the residual stresses and optimizing electrode behavior for high-performance solid-state batteries.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.