Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Zhuhong You, Yifan Shang, Quan Zou, Chen Lin
{"title":"Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation","authors":"Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Zhuhong You, Yifan Shang, Quan Zou, Chen Lin","doi":"10.1038/s41467-025-59431-9","DOIUrl":null,"url":null,"abstract":"<p>Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59431-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.

Abstract Image

用双颗粒结构自适应和对变分表示预测罕见的药物-药物相互作用事件
药物-药物不良相互作用事件(DDIEs)对患者安全构成严重风险,但由于临床数据有限,罕见但严重的相互作用仍然难以识别。现有的计算方法严重依赖于丰富的样本,无法识别罕见的DDIEs。本文介绍了一种基于度量的元学习模型RareDDIE,该模型采用双粒度结构驱动的对变分表示来增强罕见DDIE的预测。为了进一步解决零射DDIE识别的挑战,我们开发了生物语义转移(BST)模块,整合大规模的句子嵌入来形成ZetaDDIE变体。我们的模型在少样本和零样本设置中优于现有方法。此外,我们验证了DDIE的知识转移可以改善药物协同预测,超越现有模型。抗血小板活性降低和非小细胞肺癌药物协同作用的案例研究进一步说明了RareDDIE的实用价值。通过分析元知识的构建过程,我们为模型的决策提供了可解释性。这项工作为罕见DDIE预测建立了一个有效的计算框架,利用元学习和知识转移来克服数据有限场景中的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信