Ali Harooni, Mahdi Abolghasemi, Aghil Ghaheri, Ebrahim Afjei
{"title":"Enhancing an Axial Flux Halbach Array Magnetic Gear Torque Profile Using the Taguchi DOE Method","authors":"Ali Harooni, Mahdi Abolghasemi, Aghil Ghaheri, Ebrahim Afjei","doi":"10.1002/jnm.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Due to the attractive advantages of magnetic gears resulting from contactless power transmission, these magnetic devices are replacing their mechanical counterparts. An axial flux magnetic gear with a gear ratio of 5.25 is investigated in this article. The high-speed rotor is utilized with Halbach array permanent magnets (PMs). The entity of distance between high-speed rotor (HSR) magnets reduces flux leakage and subsequently reduces torque ripple. To increase the maximum applicable torque and reduce the torque ripple on both sides, eight design parameters have been adopted and optimized using Taguchi method. The Taguchi method reveals each parameter's importance, rank, and influence on the proposed gear performance in terms of percentage by using the signal-to-noise ratios and analysis of variance, respectively. It is notable that this method decreases the required experiments, significantly. Low-speed rotor (LSR) maximum applicable torque, LSR, and HSR torque ripples have been studied as single objective optimization problems. Furthermore, multiobjective function is studied as well and optimum levels of control factors are derived. In addition, the participation percentage of each control factor is obtained. The obtained results by 3D finite element method (FEM) indicate the performance improvement of the optimized structure. Finally, rotors' stresses have been studied to ensure structural stability and its effect on the overall performance.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the attractive advantages of magnetic gears resulting from contactless power transmission, these magnetic devices are replacing their mechanical counterparts. An axial flux magnetic gear with a gear ratio of 5.25 is investigated in this article. The high-speed rotor is utilized with Halbach array permanent magnets (PMs). The entity of distance between high-speed rotor (HSR) magnets reduces flux leakage and subsequently reduces torque ripple. To increase the maximum applicable torque and reduce the torque ripple on both sides, eight design parameters have been adopted and optimized using Taguchi method. The Taguchi method reveals each parameter's importance, rank, and influence on the proposed gear performance in terms of percentage by using the signal-to-noise ratios and analysis of variance, respectively. It is notable that this method decreases the required experiments, significantly. Low-speed rotor (LSR) maximum applicable torque, LSR, and HSR torque ripples have been studied as single objective optimization problems. Furthermore, multiobjective function is studied as well and optimum levels of control factors are derived. In addition, the participation percentage of each control factor is obtained. The obtained results by 3D finite element method (FEM) indicate the performance improvement of the optimized structure. Finally, rotors' stresses have been studied to ensure structural stability and its effect on the overall performance.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.