A. Oliveira de Sá, S. Lafuerza, S. Leroy, E. d’Acremont, E. Ducassou, R. Deschamps, K. Fauquembergue, S. Zaragosi, J. L. Granja-Bruña, R. Momplaisir, D. Boisson
{"title":"Enigmatic Deep-Water Seafloor Depressions East of Tortue Island, Northern Haiti Margin","authors":"A. Oliveira de Sá, S. Lafuerza, S. Leroy, E. d’Acremont, E. Ducassou, R. Deschamps, K. Fauquembergue, S. Zaragosi, J. L. Granja-Bruña, R. Momplaisir, D. Boisson","doi":"10.1029/2024GC012089","DOIUrl":null,"url":null,"abstract":"<p>A widespread area of seafloor depressions - circular, arcuate to elongated-shaped - has been found along the Northern Haitian coast, at water depths between 600 and 2,000 m. Characterized by wavelengths spanning several hundred meters and heights of tens of meters, these depressions are linked with a series of narrow ridges boasting varied morphologies. Our analysis integrating multichannel seismic reflection, high-resolution bathymetry data, and sedimentological and geochemical evaluations of surface sediment cores indicates that present-day seafloor morphology results from the interaction of slope bottom currents with the seafloor. The analyzed sediment cores exhibit hemipelagites, silty and sandy contourites, fine-grained turbidites and reworked sand layers, implying sedimentation in a contourite drift system. This is further corroborated by seismic reflection data depicting wavy reflectors and aggradational stacking features typical of contourite drifts. Seafloor depressions are likely erosional features formed on the top of a contourite drift formed by the interaction of bottom currents with an irregular seafloor morphology. The seafloor equilibrium was initially disturbed by mass-wasting events. Subsequently, the quasi-steady flow of along-slope bottom currents influenced sedimentary distribution and controlled the morphology of the seafloor depressions-constant re-shaping through erosion on their flanks. The resulting rough seafloor could have facilitated the destabilization of bottom currents and the development of erosive eddies responsible for the current morphology of the seafloor depressions. This study highlights the interplay between sedimentary processes (accumulation and compaction) and bottom currents, showing how their combined effects influence slope sedimentation and seafloor geomorphology, forming unique erosional features.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012089","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A widespread area of seafloor depressions - circular, arcuate to elongated-shaped - has been found along the Northern Haitian coast, at water depths between 600 and 2,000 m. Characterized by wavelengths spanning several hundred meters and heights of tens of meters, these depressions are linked with a series of narrow ridges boasting varied morphologies. Our analysis integrating multichannel seismic reflection, high-resolution bathymetry data, and sedimentological and geochemical evaluations of surface sediment cores indicates that present-day seafloor morphology results from the interaction of slope bottom currents with the seafloor. The analyzed sediment cores exhibit hemipelagites, silty and sandy contourites, fine-grained turbidites and reworked sand layers, implying sedimentation in a contourite drift system. This is further corroborated by seismic reflection data depicting wavy reflectors and aggradational stacking features typical of contourite drifts. Seafloor depressions are likely erosional features formed on the top of a contourite drift formed by the interaction of bottom currents with an irregular seafloor morphology. The seafloor equilibrium was initially disturbed by mass-wasting events. Subsequently, the quasi-steady flow of along-slope bottom currents influenced sedimentary distribution and controlled the morphology of the seafloor depressions-constant re-shaping through erosion on their flanks. The resulting rough seafloor could have facilitated the destabilization of bottom currents and the development of erosive eddies responsible for the current morphology of the seafloor depressions. This study highlights the interplay between sedimentary processes (accumulation and compaction) and bottom currents, showing how their combined effects influence slope sedimentation and seafloor geomorphology, forming unique erosional features.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.