A New Harmonic Regression Approach to Interpret and Predict Estuarine Salinity Variation

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
D. van Keulen, W. M. Kranenburg, A. J. F. Hoitink
{"title":"A New Harmonic Regression Approach to Interpret and Predict Estuarine Salinity Variation","authors":"D. van Keulen,&nbsp;W. M. Kranenburg,&nbsp;A. J. F. Hoitink","doi":"10.1029/2024JC022185","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a physics-inspired harmonic regression model to capture the nonstationary salinity dynamics at monitoring stations in well-mixed estuarine systems. Building on existing hybrid harmonic regression approaches, which modify the classical harmonic analysis to cope with nonstationary signals to predict tidal water levels, our model captures tidal and subtidal salinity variations using a simplified analytical salt intrusion model. The harmonic regression model was tested in the well-mixed Ems and Scheldt estuaries using data sets spanning 2–4 years, explaining 87.4%–96.4% of the observed salinity variance at upstream stations. A key finding is that storm surge effects typically have longer wavelengths than the estuary's length scale, which justifies using a linear relation between vertical and horizontal excursions. In alluvial estuaries, where the system widens, unsteadiness of the river discharge shows to be increasingly important for more downstream stations. The model quantifies the characteristic response time of salinity to variation in discharge. Based on a critical evaluation of the model equations, we offer a physical interpretation of the optimized parameters. Specifically, we discuss the Van der Burgh constant, which is an empirical coefficient commonly used in salt intrusion models. Our findings reveal that the Van der Burgh coefficient scales with the spatial scales of dispersion and advection, relative to changes in channel geometry.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022185","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a physics-inspired harmonic regression model to capture the nonstationary salinity dynamics at monitoring stations in well-mixed estuarine systems. Building on existing hybrid harmonic regression approaches, which modify the classical harmonic analysis to cope with nonstationary signals to predict tidal water levels, our model captures tidal and subtidal salinity variations using a simplified analytical salt intrusion model. The harmonic regression model was tested in the well-mixed Ems and Scheldt estuaries using data sets spanning 2–4 years, explaining 87.4%–96.4% of the observed salinity variance at upstream stations. A key finding is that storm surge effects typically have longer wavelengths than the estuary's length scale, which justifies using a linear relation between vertical and horizontal excursions. In alluvial estuaries, where the system widens, unsteadiness of the river discharge shows to be increasingly important for more downstream stations. The model quantifies the characteristic response time of salinity to variation in discharge. Based on a critical evaluation of the model equations, we offer a physical interpretation of the optimized parameters. Specifically, we discuss the Van der Burgh constant, which is an empirical coefficient commonly used in salt intrusion models. Our findings reveal that the Van der Burgh coefficient scales with the spatial scales of dispersion and advection, relative to changes in channel geometry.

Abstract Image

一种解释和预测河口盐度变化的调和回归新方法
本文介绍了一种物理启发的调和回归模型,用于捕获混合良好的河口系统监测站的非平稳盐度动态。在现有混合调和回归方法的基础上,该方法对经典调和分析进行修正,以应对非平稳信号来预测潮汐水位,我们的模型使用简化的解析盐入侵模型来捕获潮汐和潮下盐度变化。利用2 ~ 4年的数据集对混合良好的Ems和Scheldt河口进行了调和回归模型的检验,解释了上游站观测到的盐度变化的87.4% ~ 96.4%。一个关键的发现是,风暴潮效应的波长通常比河口的长度尺度更长,这证明了在垂直和水平漂移之间使用线性关系是合理的。在冲积河口,当系统变宽时,河流流量的不稳定对更多下游站来说越来越重要。该模型量化了盐度对流量变化的特征响应时间。基于对模型方程的关键评估,我们提供了优化参数的物理解释。具体来说,我们讨论了Van der Burgh常数,这是盐侵入模型中常用的经验系数。我们的研究结果表明,相对于通道几何形状的变化,Van der Burgh系数与弥散和平流的空间尺度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信