Ion Kinetics in Thin Current Sheets at Lunar Distances

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
S. R. Kamaletdinov, A. V. Artemyev, A. Runov, V. Angelopoulos
{"title":"Ion Kinetics in Thin Current Sheets at Lunar Distances","authors":"S. R. Kamaletdinov,&nbsp;A. V. Artemyev,&nbsp;A. Runov,&nbsp;V. Angelopoulos","doi":"10.1029/2024GL114522","DOIUrl":null,"url":null,"abstract":"<p>The magnetotail current sheet plays a crucial role in substorm dynamics, affecting the entire magnetosphere. Formation and reconnection of thin (ion-gyroscale) current sheets initiate magnetospheric substorms. Theoretical models suggest that a transient, demagnetized ion population is key element of the thin current sheet configuration. At lunar distances, the magnetotail provides a unique opportunity for in situ investigation of this population due to the high fraction of hot demagnetized ions. Using observations of thin current sheets by the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the relative drift between demagnetized hot ions and magnetized cold ions, likely driven by a strong polarization electric field, reduces the ion current density to nearly zero in the spacecraft rest frame. Hot ions exhibit a crescent-like velocity distribution, contributing to ion agyrotropy. We discuss this population in the context of advanced thin current sheet models, including transient ions performing Speiser-like motion. These observations provide valuable insights for numerical and theoretical studies.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114522","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetotail current sheet plays a crucial role in substorm dynamics, affecting the entire magnetosphere. Formation and reconnection of thin (ion-gyroscale) current sheets initiate magnetospheric substorms. Theoretical models suggest that a transient, demagnetized ion population is key element of the thin current sheet configuration. At lunar distances, the magnetotail provides a unique opportunity for in situ investigation of this population due to the high fraction of hot demagnetized ions. Using observations of thin current sheets by the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the relative drift between demagnetized hot ions and magnetized cold ions, likely driven by a strong polarization electric field, reduces the ion current density to nearly zero in the spacecraft rest frame. Hot ions exhibit a crescent-like velocity distribution, contributing to ion agyrotropy. We discuss this population in the context of advanced thin current sheet models, including transient ions performing Speiser-like motion. These observations provide valuable insights for numerical and theoretical studies.

Abstract Image

月球距离下薄电流片中的离子动力学
磁尾电流片在亚暴动力学中起着至关重要的作用,影响着整个磁层。薄(离子-陀螺级)电流片的形成和重新连接引发了磁层亚暴。理论模型表明,瞬态退磁离子群是薄电流片结构的关键因素。在月球距离,磁尾提供了一个独特的机会,在现场调查这一群体,由于高比例的热退磁离子。利用月球与太阳相互作用的加速、重联、湍流和电动力学对薄电流片的观测,我们发现退磁的热离子和磁化的冷离子之间的相对漂移,可能是由强极化电场驱动的,使航天器静止框架中的离子电流密度降低到接近零。热离子呈月牙形速度分布,导致离子失稳。我们在先进的薄电流片模型的背景下讨论这种人口,包括瞬态离子执行斯佩塞运动。这些观察结果为数值和理论研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信