Effect of synthesis method on electrochemical activities of V2O5 nanoparticles for supercapacitor application

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
A. G. Temam, S. A. Getaneh, Adil Alshoaibi, Chawki Awada, A. C. Nwanya, F. I. Ezema, P. M. Ejikeme
{"title":"Effect of synthesis method on electrochemical activities of V2O5 nanoparticles for supercapacitor application","authors":"A. G. Temam,&nbsp;S. A. Getaneh,&nbsp;Adil Alshoaibi,&nbsp;Chawki Awada,&nbsp;A. C. Nwanya,&nbsp;F. I. Ezema,&nbsp;P. M. Ejikeme","doi":"10.1007/s10854-025-14816-w","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) has attracted attention for supercapacitor applications due to its multifunctional properties. In this work, V<sub>2</sub>O<sub>5</sub> nanoparticles were synthesized using hydrothermal, solution combustion and sol–gel methods. The structural and morphological analyses of the samples showed the effect of synthesis methods on the electrochemical and optical properties of the V<sub>2</sub>O<sub>5</sub> electrode. The V<sub>2</sub>O<sub>5</sub> synthesised through hydrothermal (V<sub>2</sub>O<sub>5</sub>-HT), solution combustion (V<sub>2</sub>O<sub>5</sub>-SC) and sol–gel (V<sub>2</sub>O<sub>5</sub>-SG) routes exhibited irregularly shaped nanosheets, agglomerated spherical-like particles and nanocube-like structure, respectively. The average crystallite sizes of the synthesized V<sub>2</sub>O<sub>5</sub> nanoparticles were determined as 19.16, 18.77 and 20.48 nm for V<sub>2</sub>O<sub>5</sub>-HT, V<sub>2</sub>O<sub>5</sub>-SC and V<sub>2</sub>O<sub>5</sub>-SG, respectively. The optical bandgap energy of each sample was also calculated as 2.25, 2.3 and 1.9 eV for V<sub>2</sub>O<sub>5</sub>-HT, V<sub>2</sub>O<sub>5</sub>-SC and V<sub>2</sub>O<sub>5</sub>-SG, respectively. Cyclic voltammograms show the V<sub>2</sub>O<sub>5</sub> electrodes’ pseudocapacitive properties in Na<sub>2</sub>SO<sub>4</sub> electrolyte and faradic characteristics in KOH electrolyte. The impedance data can be fitted to a modified Randle equivalent circuit. The V<sub>2</sub>O<sub>5</sub>-HT, V<sub>2</sub>O<sub>5</sub>-SC and V<sub>2</sub>O<sub>5</sub>-SG electrodes respectively exhibit specific capacitances of 48.0, 16.3 and 49 F/g at 1 mV/s, and 93.1%, 100% and 108.4% of capacitance retention after 5000 cycles in 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte. Our work provides a comparative study on V<sub>2</sub>O<sub>5</sub>-based electroactive materials synthesised using different methods. The results suggest that the V<sub>2</sub>O<sub>5</sub> electrode needs integration with appropriate materials to be a potential electrode material for supercapacitor application.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14816-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium pentoxide (V2O5) has attracted attention for supercapacitor applications due to its multifunctional properties. In this work, V2O5 nanoparticles were synthesized using hydrothermal, solution combustion and sol–gel methods. The structural and morphological analyses of the samples showed the effect of synthesis methods on the electrochemical and optical properties of the V2O5 electrode. The V2O5 synthesised through hydrothermal (V2O5-HT), solution combustion (V2O5-SC) and sol–gel (V2O5-SG) routes exhibited irregularly shaped nanosheets, agglomerated spherical-like particles and nanocube-like structure, respectively. The average crystallite sizes of the synthesized V2O5 nanoparticles were determined as 19.16, 18.77 and 20.48 nm for V2O5-HT, V2O5-SC and V2O5-SG, respectively. The optical bandgap energy of each sample was also calculated as 2.25, 2.3 and 1.9 eV for V2O5-HT, V2O5-SC and V2O5-SG, respectively. Cyclic voltammograms show the V2O5 electrodes’ pseudocapacitive properties in Na2SO4 electrolyte and faradic characteristics in KOH electrolyte. The impedance data can be fitted to a modified Randle equivalent circuit. The V2O5-HT, V2O5-SC and V2O5-SG electrodes respectively exhibit specific capacitances of 48.0, 16.3 and 49 F/g at 1 mV/s, and 93.1%, 100% and 108.4% of capacitance retention after 5000 cycles in 1 M Na2SO4 electrolyte. Our work provides a comparative study on V2O5-based electroactive materials synthesised using different methods. The results suggest that the V2O5 electrode needs integration with appropriate materials to be a potential electrode material for supercapacitor application.

合成方法对超级电容器用V2O5纳米粒子电化学活性的影响
五氧化二钒(V2O5)由于其多功能的特性,在超级电容器中得到了广泛的应用。本文采用水热法、溶液燃烧法和溶胶-凝胶法合成了纳米V2O5。样品的结构和形态分析表明,不同的合成方法对V2O5电极的电化学和光学性能有影响。通过水热法(V2O5- ht)、溶液燃烧法(V2O5- sc)和溶胶-凝胶法(V2O5- sg)合成的V2O5分别表现出不规则形状的纳米片、球状球状颗粒和纳米立方体结构。V2O5- ht、V2O5- sc和V2O5- sg的平均晶粒尺寸分别为19.16、18.77和20.48 nm。V2O5-HT、V2O5-SC和V2O5-SG的光学带隙能量分别为2.25、2.3和1.9 eV。循环伏安图显示了V2O5电极在Na2SO4电解液中的赝电容特性和在KOH电解液中的faradic特性。阻抗数据可以拟合到一个改进的兰德尔等效电路中。V2O5-HT、V2O5-SC和V2O5-SG电极在1 mV/s下的比电容分别为48.0、16.3和49 F/g,在1 M Na2SO4电解液中循环5000次后的电容保持率分别为93.1%、100%和108.4%。我们的工作对不同方法合成的v2o5基电活性材料进行了比较研究。结果表明,V2O5电极需要与合适的材料相结合,才能成为一种潜在的超级电容器电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信