Agnieszka Jankowska, Paweł Kozakiewicz, Włodzimierz Buraczyk, Agata Konecka
{"title":"How genetic origin of Scots pine affects juvenile wood proportion: new modeling approach","authors":"Agnieszka Jankowska, Paweł Kozakiewicz, Włodzimierz Buraczyk, Agata Konecka","doi":"10.1007/s00226-025-01661-7","DOIUrl":null,"url":null,"abstract":"<div><p>The way of trees adaptation to environments is a vital concern. Presented research focused on wood tissue diversity in terms of the juvenile wood proportion (wood located near the pith and of structure and properties different from outer wood zone, called as mature wood), an important characteristic for wood properties, to assess the evolutionary and functional impact of genetic variations. In this paper, the material from experimental provenance plot in Poland (Rogów) was presented. The tested trees were grown at the same time, in the same soil for the same period of time, but the parental stands of tested trees were from the different Polish regions. Based on the results it was concluded that origin of parental trees has an influence on the amount of juvenile wood expressed by the number of annual growth rings, as well as the volume occupied in the trunk of the trees. The wood formation, particularly the amount of juvenile wood, is influenced by the climatic conditions of parental trees’ habitat (epigenetic indicators). The amount of precipitation is predominantly important in this respect. The new mathematical model for estimating the number of annual increments corresponding to the juvenile wood zone was proposed. The obtained results highpoint the necessity of taking epigenetic indicators into account in future breeding strategies composed with genetic markers for both wood production and quality in the context of climate change that requires adaptation.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-025-01661-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01661-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The way of trees adaptation to environments is a vital concern. Presented research focused on wood tissue diversity in terms of the juvenile wood proportion (wood located near the pith and of structure and properties different from outer wood zone, called as mature wood), an important characteristic for wood properties, to assess the evolutionary and functional impact of genetic variations. In this paper, the material from experimental provenance plot in Poland (Rogów) was presented. The tested trees were grown at the same time, in the same soil for the same period of time, but the parental stands of tested trees were from the different Polish regions. Based on the results it was concluded that origin of parental trees has an influence on the amount of juvenile wood expressed by the number of annual growth rings, as well as the volume occupied in the trunk of the trees. The wood formation, particularly the amount of juvenile wood, is influenced by the climatic conditions of parental trees’ habitat (epigenetic indicators). The amount of precipitation is predominantly important in this respect. The new mathematical model for estimating the number of annual increments corresponding to the juvenile wood zone was proposed. The obtained results highpoint the necessity of taking epigenetic indicators into account in future breeding strategies composed with genetic markers for both wood production and quality in the context of climate change that requires adaptation.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.