Adaptive virtual element method with RCP for mixed-mode fracture analysis of marble rocks using GMTS criterion

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdallah Salama, Ahmed Elsayed, Atef Eraky, Rania Samir
{"title":"Adaptive virtual element method with RCP for mixed-mode fracture analysis of marble rocks using GMTS criterion","authors":"Abdallah Salama,&nbsp;Ahmed Elsayed,&nbsp;Atef Eraky,&nbsp;Rania Samir","doi":"10.1007/s10704-025-00846-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the application of the Virtual Element Method (VEM) for simulating crack propagation in 2D marble rock under linear elastic fracture mechanics (LEFM) conditions. The inherent mesh flexibility of VEM is leveraged by employing an adaptive mesh refinement (AMR) strategy based on recovery by compatibility in patches (RCP) for triangular, quadrilateral, and even polygonal meshes. The accuracy and efficiency of crack path prediction are enhanced by calculating stress intensity factors (SIFs) and T-stress through the interaction domain integral method coupled with the Generalized Maximum Tangential Stress (GMTS) criterion. The effectiveness of this approach is validated using three distinct marble rock specimens with varying material properties and initial crack configurations: semi-circular bend (SCB) Harsian Marble, center-cracked circular disk (CCCD) limestone, and edge-cracked triangular (ECT) Neyriz Marble. The GMTS criterion, incorporating three parameters (KI, KII, and T), precisely predicts crack initiation and propagation directions, demonstrating its superiority for mixed-mode fractures.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00846-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00846-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the application of the Virtual Element Method (VEM) for simulating crack propagation in 2D marble rock under linear elastic fracture mechanics (LEFM) conditions. The inherent mesh flexibility of VEM is leveraged by employing an adaptive mesh refinement (AMR) strategy based on recovery by compatibility in patches (RCP) for triangular, quadrilateral, and even polygonal meshes. The accuracy and efficiency of crack path prediction are enhanced by calculating stress intensity factors (SIFs) and T-stress through the interaction domain integral method coupled with the Generalized Maximum Tangential Stress (GMTS) criterion. The effectiveness of this approach is validated using three distinct marble rock specimens with varying material properties and initial crack configurations: semi-circular bend (SCB) Harsian Marble, center-cracked circular disk (CCCD) limestone, and edge-cracked triangular (ECT) Neyriz Marble. The GMTS criterion, incorporating three parameters (KI, KII, and T), precisely predicts crack initiation and propagation directions, demonstrating its superiority for mixed-mode fractures.

基于RCP的大理岩混合模式断裂分析的自适应虚拟元法
本文研究了虚拟元法(VEM)在线弹性断裂力学(LEFM)条件下模拟二维大理岩裂纹扩展的应用。VEM通过采用基于补丁兼容性恢复(RCP)的自适应网格细化(AMR)策略,对三角形、四边形甚至多边形网格采用了固有的网格灵活性。结合广义最大切向应力准则,采用相互作用域积分法计算应力强度因子(SIFs)和t应力,提高了裂纹路径预测的精度和效率。该方法的有效性通过三种具有不同材料特性和初始裂缝形态的大理岩样品进行了验证:半圆形弯曲(SCB) Harsian大理岩、中心裂纹圆形圆盘(CCCD)石灰岩和边缘裂纹三角形(ECT) Neyriz大理岩。GMTS准则包含三个参数(KI、KII和T),能够准确预测裂纹的起裂和扩展方向,显示了其在混合模式裂缝中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信