Sai Sowmya Nagam;Bikash C. Pal;Heng Wu;Frede Blaabjerg
{"title":"Synchronization Stability Analysis of SRF-PLL and DSOGI-PLL Using Port-Hamiltonian Framework","authors":"Sai Sowmya Nagam;Bikash C. Pal;Heng Wu;Frede Blaabjerg","doi":"10.1109/TCST.2024.3523711","DOIUrl":null,"url":null,"abstract":"This article proposes port-Hamiltonian (pH) stability analysis of synchronous reference frame-phase-locked loop (SRF-PLL) and double second-order generalized integrator-PLL (DSOGI-PLL) while accounting for the overlapping converter dynamics under low-inertia and weak-grid scenarios. The main aim is to highlight the risk of PLL interactions with the converter controllers under nonideal operating conditions. The nonlinear pH models of SRF-PLL and DSOGI-PLL are used to derive analytical stability criteria, which help monitor the effect of PLL interactions on synchronization stability. The stability criteria are substantiated through MATLAB/Simulink simulations on a 400-V Converter-Grid test system. It is shown that the stability criteria derived based on time-scale separation is inexact. In comparison, the proposed criteria, accounting for converter dynamics, offer better stability predictions and match closely with the simulation results.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 3","pages":"952-962"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836956/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes port-Hamiltonian (pH) stability analysis of synchronous reference frame-phase-locked loop (SRF-PLL) and double second-order generalized integrator-PLL (DSOGI-PLL) while accounting for the overlapping converter dynamics under low-inertia and weak-grid scenarios. The main aim is to highlight the risk of PLL interactions with the converter controllers under nonideal operating conditions. The nonlinear pH models of SRF-PLL and DSOGI-PLL are used to derive analytical stability criteria, which help monitor the effect of PLL interactions on synchronization stability. The stability criteria are substantiated through MATLAB/Simulink simulations on a 400-V Converter-Grid test system. It is shown that the stability criteria derived based on time-scale separation is inexact. In comparison, the proposed criteria, accounting for converter dynamics, offer better stability predictions and match closely with the simulation results.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.