Nur Syahirah Roslan;Ibrahima Faye;Hafeez Ullah Amin;Muhamad Hafiz Abd Latif
{"title":"Enhancing Extraversion Classification With Sample Entropy: A Comparison of Two EEG Epoch Lengths","authors":"Nur Syahirah Roslan;Ibrahima Faye;Hafeez Ullah Amin;Muhamad Hafiz Abd Latif","doi":"10.1109/LSENS.2025.3559549","DOIUrl":null,"url":null,"abstract":"With the advancement of technology, many researchers have begun to employ electroencephalography (EEG) to assess extraversion personality traits, replacing subjective self-report questionnaires. However, most EEG studies are time-consuming and have inadequate classification accuracy. Thus, this letter proposes a framework for extraversion classification using sample entropy features extracted from resting-state EEG signals. The proposed framework compares two different EEG epoch lengths (15 and 120 s) and evaluates their impact on classification performance. To enhance the classification performance, a sequential forward selection method is applied to ensure that only the most optimal features are utilized. Using support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting as classifiers, the study shows that sample entropy outperforms power and coherence features in classifying extraversion. Remarkably, the framework achieves 100% classification accuracy using a single feature: the sample entropy from a 15-s eyes-open condition at the Fpz electrode. By reducing the number of required features to just one and focusing on a shorter EEG epoch length, this finding reflects the potential of developing EEG-based sensor systems that are more practical and cost-effective in the future.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960755/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of technology, many researchers have begun to employ electroencephalography (EEG) to assess extraversion personality traits, replacing subjective self-report questionnaires. However, most EEG studies are time-consuming and have inadequate classification accuracy. Thus, this letter proposes a framework for extraversion classification using sample entropy features extracted from resting-state EEG signals. The proposed framework compares two different EEG epoch lengths (15 and 120 s) and evaluates their impact on classification performance. To enhance the classification performance, a sequential forward selection method is applied to ensure that only the most optimal features are utilized. Using support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting as classifiers, the study shows that sample entropy outperforms power and coherence features in classifying extraversion. Remarkably, the framework achieves 100% classification accuracy using a single feature: the sample entropy from a 15-s eyes-open condition at the Fpz electrode. By reducing the number of required features to just one and focusing on a shorter EEG epoch length, this finding reflects the potential of developing EEG-based sensor systems that are more practical and cost-effective in the future.