Albertus Johannes Malan;Joel Ferguson;Michele Cucuzzella;Jacquelien M. A. Scherpen;Sören Hohmann
{"title":"Passivation of Clustered DC Microgrids With Non-Monotone Loads","authors":"Albertus Johannes Malan;Joel Ferguson;Michele Cucuzzella;Jacquelien M. A. Scherpen;Sören Hohmann","doi":"10.1109/TCST.2025.3537861","DOIUrl":null,"url":null,"abstract":"In this article, we consider the problem of voltage stability in dc networks containing uncertain loads with non-monotone incremental impedances and where the steady-state power availability is restricted to a subset of the buses in the network. We propose controllers for powered buses that guarantee voltage regulation and output strictly equilibrium independent passivity (OS-EIP) of the controlled buses, while buses without power are equipped with controllers that dampen their transient behavior. The OS-EIP of a cluster containing both bus types is verified through a linear matrix inequality (LMI) condition, and the asymptotic stability of the overall microgrid with uncertain, non-monotone loads is ensured by interconnecting the OS-EIP clusters. By further using singular perturbation theory, we show that the OS-EIP property of the clusters is robust against certain network parameter and topology changes.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 3","pages":"1069-1084"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10885782/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider the problem of voltage stability in dc networks containing uncertain loads with non-monotone incremental impedances and where the steady-state power availability is restricted to a subset of the buses in the network. We propose controllers for powered buses that guarantee voltage regulation and output strictly equilibrium independent passivity (OS-EIP) of the controlled buses, while buses without power are equipped with controllers that dampen their transient behavior. The OS-EIP of a cluster containing both bus types is verified through a linear matrix inequality (LMI) condition, and the asymptotic stability of the overall microgrid with uncertain, non-monotone loads is ensured by interconnecting the OS-EIP clusters. By further using singular perturbation theory, we show that the OS-EIP property of the clusters is robust against certain network parameter and topology changes.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.