{"title":"Physics-Informed Neural Networks With Unscented Kalman Filter for Sensorless Joint Torque Estimation in Humanoid Robots","authors":"Ines Sorrentino;Giulio Romualdi;Lorenzo Moretti;Silvio Traversaro;Daniele Pucci","doi":"10.1109/LRA.2025.3562792","DOIUrl":null,"url":null,"abstract":"This paper presents a novel framework for whole-body torque control of humanoid robots without joint torque sensors, designed for systems with electric motors and high-ratio harmonic drives. The approach integrates Physics-Informed Neural Networks (PINNs) for friction modeling and Unscented Kalman Filtering (UKF) for joint torque estimation, within a real-time torque control architecture. PINNs estimate nonlinear static and dynamic friction from joint and motor velocity readings, capturing effects like motor actuation without joint movement. The UKF utilizes PINN-based friction estimates as direct measurement inputs, improving torque estimation robustness. Experimental validation on the ergoCub humanoid robot demonstrates improved torque tracking accuracy, enhanced energy efficiency, and superior disturbance rejection compared to the state-of-the-art Recursive Newton-Euler Algorithm (RNEA), using a dynamic balancing experiment. The framework's scalability is shown by consistent performance across robots with similar hardware but different friction characteristics, without re-identification. Furthermore, a comparative analysis with position control highlights the advantages of the proposed torque control approach. The results establish the method as a scalable and practical solution for sensorless torque control in humanoid robots, ensuring torque tracking, adaptability, and stability in dynamic environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5705-5712"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10971218/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel framework for whole-body torque control of humanoid robots without joint torque sensors, designed for systems with electric motors and high-ratio harmonic drives. The approach integrates Physics-Informed Neural Networks (PINNs) for friction modeling and Unscented Kalman Filtering (UKF) for joint torque estimation, within a real-time torque control architecture. PINNs estimate nonlinear static and dynamic friction from joint and motor velocity readings, capturing effects like motor actuation without joint movement. The UKF utilizes PINN-based friction estimates as direct measurement inputs, improving torque estimation robustness. Experimental validation on the ergoCub humanoid robot demonstrates improved torque tracking accuracy, enhanced energy efficiency, and superior disturbance rejection compared to the state-of-the-art Recursive Newton-Euler Algorithm (RNEA), using a dynamic balancing experiment. The framework's scalability is shown by consistent performance across robots with similar hardware but different friction characteristics, without re-identification. Furthermore, a comparative analysis with position control highlights the advantages of the proposed torque control approach. The results establish the method as a scalable and practical solution for sensorless torque control in humanoid robots, ensuring torque tracking, adaptability, and stability in dynamic environments.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.