{"title":"LLM-Based Multi-Agent Decision-Making: Challenges and Future Directions","authors":"Chuanneng Sun;Songjun Huang;Dario Pompili","doi":"10.1109/LRA.2025.3562371","DOIUrl":null,"url":null,"abstract":"In recent years, Large Language Models (LLMs) have shown great abilities in various tasks, including question answering, arithmetic problem solving, and poetry writing, among others. Although research on LLM-as-an-agent has shown that LLM can be applied to Decision-Making (DM) and achieve decent results, the extension of LLM-based agents to Multi-Agent DM (MADM) is not trivial, as many aspects, such as coordination and communication between agents, are not considered in the DM frameworks of a single agent. To inspire more research on LLM-based MADM, in this letter, we survey the existing LLM-based single-agent and multi-agent decision-making frameworks and provide potential research directions for future research. In particular, we focus on the cooperative tasks of multiple agents with a common goal and communication among them. We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5681-5688"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970024/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, Large Language Models (LLMs) have shown great abilities in various tasks, including question answering, arithmetic problem solving, and poetry writing, among others. Although research on LLM-as-an-agent has shown that LLM can be applied to Decision-Making (DM) and achieve decent results, the extension of LLM-based agents to Multi-Agent DM (MADM) is not trivial, as many aspects, such as coordination and communication between agents, are not considered in the DM frameworks of a single agent. To inspire more research on LLM-based MADM, in this letter, we survey the existing LLM-based single-agent and multi-agent decision-making frameworks and provide potential research directions for future research. In particular, we focus on the cooperative tasks of multiple agents with a common goal and communication among them. We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.