Violation of Svetlichny’s inequality in a system of spins j

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yang Xiang, Yuan Tao
{"title":"Violation of Svetlichny’s inequality in a system of spins j","authors":"Yang Xiang,&nbsp;Yuan Tao","doi":"10.1016/j.cjph.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum multi-particle correlations are one of the most intriguing properties of quantum entanglement, arising from collective entangled states of multiple particles. Svetlichny’s inequality (SI) was the first method proposed to test the existence of such correlations. Previous studies have primarily focused on <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>-spin particle systems. In this paper, we present a unified scheme that enables the violation of SI in arbitrary non-zero spin particle systems. Specifically, for all fermion systems, our scheme achieves the maximal quantum violation of SI for any number of particles. For boson systems, when the particle spin <span><math><mrow><mi>j</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, our scheme consistently realizes the violation of SI for any number of particles. When the particle spin <span><math><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow></math></span>, our scheme can yield SI violation for up to 7 particles. Furthermore, as the particle spin <span><math><mi>j</mi></math></span> approaches infinity, our scheme achieves the maximal quantum violation of SI. To obtain these results, we also prove that the upper bound of Svetlichny’s operator within the framework of local hidden variable theory is <span><math><msqrt><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></msqrt></math></span>. These findings not only enhance our understanding of quantum correlations across various particle systems but also provide valuable insights for the development of quantum communication protocols that utilize entanglement and non-locality in multi-particle configurations.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"95 ","pages":"Pages 1096-1104"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325001601","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum multi-particle correlations are one of the most intriguing properties of quantum entanglement, arising from collective entangled states of multiple particles. Svetlichny’s inequality (SI) was the first method proposed to test the existence of such correlations. Previous studies have primarily focused on 1/2-spin particle systems. In this paper, we present a unified scheme that enables the violation of SI in arbitrary non-zero spin particle systems. Specifically, for all fermion systems, our scheme achieves the maximal quantum violation of SI for any number of particles. For boson systems, when the particle spin j2, our scheme consistently realizes the violation of SI for any number of particles. When the particle spin j=1, our scheme can yield SI violation for up to 7 particles. Furthermore, as the particle spin j approaches infinity, our scheme achieves the maximal quantum violation of SI. To obtain these results, we also prove that the upper bound of Svetlichny’s operator within the framework of local hidden variable theory is 2N+1. These findings not only enhance our understanding of quantum correlations across various particle systems but also provide valuable insights for the development of quantum communication protocols that utilize entanglement and non-locality in multi-particle configurations.

Abstract Image

自旋系统j中Svetlichny不等式的违反
量子多粒子相关是量子纠缠最有趣的特性之一,它产生于多个粒子的集体纠缠态。Svetlichny不等式(SI)是第一个用来检验这种相关性是否存在的方法。以前的研究主要集中在1/2自旋粒子系统上。在本文中,我们提出了一个统一的方案,使任意非零自旋粒子系统的SI违背成为可能。具体地说,对于所有费米子系统,我们的方案实现了任意数量粒子的最大量子违反SI。对于玻色子系统,当粒子自旋j≥2时,我们的方案一致地实现了任意数量粒子的SI违背。当粒子自旋j=1时,我们的方案可以产生多达7个粒子的SI违背。此外,当粒子自旋j接近无穷大时,我们的方案实现了SI的最大量子违反。为了得到这些结果,我们还证明了局部隐变量理论框架内Svetlichny算子的上界为2N+1。这些发现不仅增强了我们对各种粒子系统之间量子相关性的理解,而且为在多粒子配置中利用纠缠和非局域性的量子通信协议的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信