{"title":"A positive meshless finite difference scheme for scalar conservation laws with adaptive artificial viscosity driven by fault detection","authors":"Cesare Bracco , Oleg Davydov , Carlotta Giannelli , Alessandra Sestini","doi":"10.1016/j.camwa.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>We present a meshless finite difference method for multivariate scalar conservation laws that generates positive schemes satisfying a local maximum principle on irregular nodes and relies on artificial viscosity for shock capturing. Coupling two different numerical differentiation formulas and the adaptive selection of the sets of influence allows to meet a local CFL condition without any <em>a priori</em> time step restriction. The artificial viscosity term is chosen in an adaptive way by applying it only in the vicinity of the sharp features of the solution identified by an algorithm for fault detection on scattered data. Numerical tests demonstrate a robust performance of the method on irregular nodes and advantages of adaptive artificial viscosity. The accuracy of the obtained solutions is comparable to that for standard monotone methods available only on Cartesian grids.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 103-121"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001518","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a meshless finite difference method for multivariate scalar conservation laws that generates positive schemes satisfying a local maximum principle on irregular nodes and relies on artificial viscosity for shock capturing. Coupling two different numerical differentiation formulas and the adaptive selection of the sets of influence allows to meet a local CFL condition without any a priori time step restriction. The artificial viscosity term is chosen in an adaptive way by applying it only in the vicinity of the sharp features of the solution identified by an algorithm for fault detection on scattered data. Numerical tests demonstrate a robust performance of the method on irregular nodes and advantages of adaptive artificial viscosity. The accuracy of the obtained solutions is comparable to that for standard monotone methods available only on Cartesian grids.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).