A positive meshless finite difference scheme for scalar conservation laws with adaptive artificial viscosity driven by fault detection

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Cesare Bracco , Oleg Davydov , Carlotta Giannelli , Alessandra Sestini
{"title":"A positive meshless finite difference scheme for scalar conservation laws with adaptive artificial viscosity driven by fault detection","authors":"Cesare Bracco ,&nbsp;Oleg Davydov ,&nbsp;Carlotta Giannelli ,&nbsp;Alessandra Sestini","doi":"10.1016/j.camwa.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>We present a meshless finite difference method for multivariate scalar conservation laws that generates positive schemes satisfying a local maximum principle on irregular nodes and relies on artificial viscosity for shock capturing. Coupling two different numerical differentiation formulas and the adaptive selection of the sets of influence allows to meet a local CFL condition without any <em>a priori</em> time step restriction. The artificial viscosity term is chosen in an adaptive way by applying it only in the vicinity of the sharp features of the solution identified by an algorithm for fault detection on scattered data. Numerical tests demonstrate a robust performance of the method on irregular nodes and advantages of adaptive artificial viscosity. The accuracy of the obtained solutions is comparable to that for standard monotone methods available only on Cartesian grids.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 103-121"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001518","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a meshless finite difference method for multivariate scalar conservation laws that generates positive schemes satisfying a local maximum principle on irregular nodes and relies on artificial viscosity for shock capturing. Coupling two different numerical differentiation formulas and the adaptive selection of the sets of influence allows to meet a local CFL condition without any a priori time step restriction. The artificial viscosity term is chosen in an adaptive way by applying it only in the vicinity of the sharp features of the solution identified by an algorithm for fault detection on scattered data. Numerical tests demonstrate a robust performance of the method on irregular nodes and advantages of adaptive artificial viscosity. The accuracy of the obtained solutions is comparable to that for standard monotone methods available only on Cartesian grids.
基于故障检测的自适应人工黏度标量守恒律的正无网格有限差分格式
本文提出了一种多元标量守恒律的无网格有限差分法,该方法在不规则节点上生成满足局部极大值原则的正格式,并依赖于人工黏度进行激波捕获。耦合两种不同的数值微分公式和自适应选择影响集可以满足局部CFL条件,而无需任何先验的时间步长限制。通过将人工黏度项应用于离散数据故障检测算法所识别的解的尖锐特征附近,以自适应的方式选择该黏度项。数值试验证明了该方法在不规则节点上的鲁棒性和自适应人工黏度的优越性。所得解的精度可与仅在笛卡尔网格上可用的标准单调方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信