Studying supercapacitance properties of Mg3Si and Ti3Si as novel electrode materials: A first-principles study

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Fatemeh Shirvani , Aliasghar Shokri
{"title":"Studying supercapacitance properties of Mg3Si and Ti3Si as novel electrode materials: A first-principles study","authors":"Fatemeh Shirvani ,&nbsp;Aliasghar Shokri","doi":"10.1016/j.chemphys.2025.112740","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, the supercapacitor performance of two innovative and environmentally friendly materials, Mg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si and Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si, in bulk form are investigated using density functional theory (DFT). The mechanical and dynamic stability of these compounds are assessed through negative cohesive energy values and positive phonon density of states (DOS) modes. Furthermore, the electronic DOS analysis confirmed the metallic characteristics of these materials, highlighting their potential suitability as electrode materials. The partial electronic DOS at the Fermi level for Mg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si was primarily contributed by the 3p orbitals of Si atoms, while for Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si, the dominant contribution came from the 3d orbitals of Ti atoms. Furthermore, the highest surface quantum capacitance for Mg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si was found along the xy direction, reaching 222.01 <span><math><mi>μ</mi></math></span>F/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> at a positive bias of 2.54 V, while Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Si exhibited a value of 293.91 <span><math><mi>μ</mi></math></span>F/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> at −0.59 V. These findings highlight the promising potential of these materials for supercapacitor applications.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"596 ","pages":"Article 112740"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425001417","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, the supercapacitor performance of two innovative and environmentally friendly materials, Mg3Si and Ti3Si, in bulk form are investigated using density functional theory (DFT). The mechanical and dynamic stability of these compounds are assessed through negative cohesive energy values and positive phonon density of states (DOS) modes. Furthermore, the electronic DOS analysis confirmed the metallic characteristics of these materials, highlighting their potential suitability as electrode materials. The partial electronic DOS at the Fermi level for Mg3Si was primarily contributed by the 3p orbitals of Si atoms, while for Ti3Si, the dominant contribution came from the 3d orbitals of Ti atoms. Furthermore, the highest surface quantum capacitance for Mg3Si was found along the xy direction, reaching 222.01 μF/cm2 at a positive bias of 2.54 V, while Ti3Si exhibited a value of 293.91 μF/cm2 at −0.59 V. These findings highlight the promising potential of these materials for supercapacitor applications.
新型电极材料Mg3Si和Ti3Si超电容特性的第一性原理研究
在本研究中,利用密度泛函理论(DFT)研究了两种创新的环保材料Mg3Si和Ti3Si的块体超级电容器性能。这些化合物的力学和动力学稳定性通过负内聚能值和正声子态密度(DOS)模式来评估。此外,电子DOS分析证实了这些材料的金属特性,突出了它们作为电极材料的潜在适用性。在费米能级上,Mg3Si的部分电子DOS主要由Si原子的3p轨道贡献,而Ti3Si的部分电子DOS主要来自Ti原子的3d轨道。此外,Mg3Si在xy方向上的表面量子电容最高,在正偏压2.54 V时达到222.01 μF/cm2,而Ti3Si在负0.59 V时的表面量子电容为293.91 μF/cm2。这些发现突出了这些材料在超级电容器应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信