Athba Sabhan Khalaf , Zainab Y. Shnain , Alaa Dhari Jawad Al-Bayati , Hasan Sh. Majdi , Mohammad F. Abid , Ahmed Abdalhussein Bilal , Adnan.A. Alsalim , Nour Hamid Abdrahman , Aswar A. Alwasiti
{"title":"Advancements in multifunctional nanomaterials for synergistic photocatalytic and adsorptive water treatment processes","authors":"Athba Sabhan Khalaf , Zainab Y. Shnain , Alaa Dhari Jawad Al-Bayati , Hasan Sh. Majdi , Mohammad F. Abid , Ahmed Abdalhussein Bilal , Adnan.A. Alsalim , Nour Hamid Abdrahman , Aswar A. Alwasiti","doi":"10.1016/j.rechem.2025.102292","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater generated from different anthropogenic activities often poses health risks to both human and aquatic lives which necessitate the development of advanced remediation technologies using multifunctional nanocomposites. There is an increasing interest in the application of multifunctional nanocomposites for wastewater treatment due to their tendency to be used in combined photocatalytic and adsorption process. The multifunctional nanocomposites offer synergistic effects which provide opportunities for efficient capture of the contaminants and subsequently degrading them under various environmental conditions. The recent advances in the applications of multifunctional nanocomposites include the design of photocatalysts that could be applied under visible light irradiation, surface modified adsorbents, and heterojunction nanomaterials. Multifunctional nanocomposites have displayed noteworthy performance in the removal of organic contaminants such as dyes, pharmaceuticals residues, phenols as well as heavy metals with enhanced stability, reusability and scalability. Key advancements in the application of the multifunctional nanocomposite, and the various mechanism in the adsorption and photocatalytic process have been highlighted in this review. The review presented a future perspective with an emphasis on the necessity of cost-effectiveness and environmentally sustainable nanomaterials to ensure sustainable wastewater treatment technologies.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102292"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625002759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater generated from different anthropogenic activities often poses health risks to both human and aquatic lives which necessitate the development of advanced remediation technologies using multifunctional nanocomposites. There is an increasing interest in the application of multifunctional nanocomposites for wastewater treatment due to their tendency to be used in combined photocatalytic and adsorption process. The multifunctional nanocomposites offer synergistic effects which provide opportunities for efficient capture of the contaminants and subsequently degrading them under various environmental conditions. The recent advances in the applications of multifunctional nanocomposites include the design of photocatalysts that could be applied under visible light irradiation, surface modified adsorbents, and heterojunction nanomaterials. Multifunctional nanocomposites have displayed noteworthy performance in the removal of organic contaminants such as dyes, pharmaceuticals residues, phenols as well as heavy metals with enhanced stability, reusability and scalability. Key advancements in the application of the multifunctional nanocomposite, and the various mechanism in the adsorption and photocatalytic process have been highlighted in this review. The review presented a future perspective with an emphasis on the necessity of cost-effectiveness and environmentally sustainable nanomaterials to ensure sustainable wastewater treatment technologies.