Updated multi-layer perceptron algorithm for predicting solute transport parameters and processes in karst conduits with variable flow rates

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaoer Zhao , Zhenxue Dai , Mohamad Reza Soltanian , Jichun Wu , Botao Ding , Yue Ma , Dayong Wang
{"title":"Updated multi-layer perceptron algorithm for predicting solute transport parameters and processes in karst conduits with variable flow rates","authors":"Xiaoer Zhao ,&nbsp;Zhenxue Dai ,&nbsp;Mohamad Reza Soltanian ,&nbsp;Jichun Wu ,&nbsp;Botao Ding ,&nbsp;Yue Ma ,&nbsp;Dayong Wang","doi":"10.1016/j.envsoft.2025.106489","DOIUrl":null,"url":null,"abstract":"<div><div>This study pioneers the application of a Bayesian-optimized multilayer perceptron (MLP) framework to predict the complete breakthrough curve (BTC) in two conduits under various flow conditions, unlike prior research that predicted only partial BTC. MLP shows significant advances in BTC prediction accuracy compared with Random Forest and Support Vector Regression. The transient storage model then simulates predicted BTCs to derive parameters: dispersion coefficient (<em>D</em>), cross-sectional area of main channel (<em>A</em>), cross-sectional area of storage zone (<em>A</em><sub>s</sub>), and exchange coefficient (<em>α</em>). Fifty-four MLP models are developed and trained, with an incremental increase in training data and input variables across scenarios S1-S3. S2 and S3 notably improve BTC prediction accuracy over S1, with <em>R</em><sup>2</sup> ≥ 0.9. S2 and S3 predict <em>A</em> with &lt;6.6 % error, and <em>A</em><sub>s</sub> and <em>α</em> with &lt;20 % and &lt;50 % errors respectively. These results prove MLP's effectiveness in predicting solute transport parameters in karst conduits with variable discharges.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"191 ","pages":"Article 106489"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001732","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study pioneers the application of a Bayesian-optimized multilayer perceptron (MLP) framework to predict the complete breakthrough curve (BTC) in two conduits under various flow conditions, unlike prior research that predicted only partial BTC. MLP shows significant advances in BTC prediction accuracy compared with Random Forest and Support Vector Regression. The transient storage model then simulates predicted BTCs to derive parameters: dispersion coefficient (D), cross-sectional area of main channel (A), cross-sectional area of storage zone (As), and exchange coefficient (α). Fifty-four MLP models are developed and trained, with an incremental increase in training data and input variables across scenarios S1-S3. S2 and S3 notably improve BTC prediction accuracy over S1, with R2 ≥ 0.9. S2 and S3 predict A with <6.6 % error, and As and α with <20 % and <50 % errors respectively. These results prove MLP's effectiveness in predicting solute transport parameters in karst conduits with variable discharges.
基于多层感知器的变流量岩溶管道溶质输运参数与过程预测
该研究首次应用了贝叶斯优化多层感知器(MLP)框架来预测不同流动条件下两条管道的完全突破曲线(BTC),而之前的研究仅预测部分突破曲线。与随机森林和支持向量回归相比,MLP在BTC预测精度上有显著提高。然后,暂态存储模型对预测的btc进行模拟,得到色散系数(D)、主通道横截面积(A)、存储区横截面积(As)和交换系数(α)。开发并训练了54个MLP模型,并在情景S1-S3中逐步增加了训练数据和输入变量。S2和S3较S1显著提高BTC预测精度,R2≥0.9。S2和S3预测A的误差为<; 6.6%,预测A和α的误差分别为<; 20%和<; 50%。这些结果证明了MLP预测变流量岩溶管道溶质输运参数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信