ECG-based cardiac arrhythmia classification using fuzzy encoded features and deep neural networks

Kiruthika Balakrishnan , Durgadevi Velusamy , Karthikeyan Ramasamy , Lisiane Pruinelli
{"title":"ECG-based cardiac arrhythmia classification using fuzzy encoded features and deep neural networks","authors":"Kiruthika Balakrishnan ,&nbsp;Durgadevi Velusamy ,&nbsp;Karthikeyan Ramasamy ,&nbsp;Lisiane Pruinelli","doi":"10.1016/j.bea.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiac arrhythmia, characterized by an irregular heart rhythm, is a leading cause of sudden and unexpected deaths among patients with cardiovascular diseases. The electrocardiogram (ECG) is a widely utilized non-invasive tool for detecting cardiac arrhythmias. This study investigates the effectiveness of ECG signals in diagnosing various irregular heart rhythms and proposes a novel framework integrating a fuzzy system with deep neural networks. Our approach combines Fourier–Bessel Series Expansion (FBSE)-Tunable Q Wavelet Transform (TQWT) and Principal Component Analysis (PCA) for automatic arrhythmia classification. Compared to conventional deep learning models that rely on raw ECG signals, our method enhances interpretability and feature extraction by incorporating time–frequency analysis and fuzzy feature encoding. Experimental validation using the MIT-BIH dataset demonstrated that our approach outperforms state-of-the-art models in classifying five arrhythmia categories (N, SVEB, VEB, Q, and F) based on the Association for the Advancement of Medical Instrumentation (AAMI) standards. Our model achieved precision scores of 0.98 (N), 0.95 (F), 0.98 (VEB), 0.90 (SVEB), and 0.99 (Q), with corresponding recall values of 1.00 (N), 0.74 (F), 0.93 (VEB), 0.72 (SVEB), and 0.98 (Q). The integration of FBSE-TQWT with a fuzzy deep neural network represents a substantial advancement in ECG-based arrhythmia detection, offering improved accuracy, robustness, and clinical applicability, particularly in distinguishing minority classes such as supraventricular ectopic beats (SVEB) and fusion beats (F).</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100167"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099225000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac arrhythmia, characterized by an irregular heart rhythm, is a leading cause of sudden and unexpected deaths among patients with cardiovascular diseases. The electrocardiogram (ECG) is a widely utilized non-invasive tool for detecting cardiac arrhythmias. This study investigates the effectiveness of ECG signals in diagnosing various irregular heart rhythms and proposes a novel framework integrating a fuzzy system with deep neural networks. Our approach combines Fourier–Bessel Series Expansion (FBSE)-Tunable Q Wavelet Transform (TQWT) and Principal Component Analysis (PCA) for automatic arrhythmia classification. Compared to conventional deep learning models that rely on raw ECG signals, our method enhances interpretability and feature extraction by incorporating time–frequency analysis and fuzzy feature encoding. Experimental validation using the MIT-BIH dataset demonstrated that our approach outperforms state-of-the-art models in classifying five arrhythmia categories (N, SVEB, VEB, Q, and F) based on the Association for the Advancement of Medical Instrumentation (AAMI) standards. Our model achieved precision scores of 0.98 (N), 0.95 (F), 0.98 (VEB), 0.90 (SVEB), and 0.99 (Q), with corresponding recall values of 1.00 (N), 0.74 (F), 0.93 (VEB), 0.72 (SVEB), and 0.98 (Q). The integration of FBSE-TQWT with a fuzzy deep neural network represents a substantial advancement in ECG-based arrhythmia detection, offering improved accuracy, robustness, and clinical applicability, particularly in distinguishing minority classes such as supraventricular ectopic beats (SVEB) and fusion beats (F).
基于模糊编码特征和深度神经网络的心电心律失常分类
心律失常,以心律不规律为特征,是心血管疾病患者突然和意外死亡的主要原因。心电图(ECG)是一种广泛使用的无创检测心律失常的工具。本研究探讨了心电信号在诊断各种不规则心律方面的有效性,并提出了一种将模糊系统与深度神经网络相结合的新框架。我们的方法结合傅里叶-贝塞尔级数展开(FBSE)-可调Q小波变换(TQWT)和主成分分析(PCA)进行心律失常自动分类。与依赖原始心电信号的传统深度学习模型相比,我们的方法通过结合时频分析和模糊特征编码增强了可解释性和特征提取。使用MIT-BIH数据集的实验验证表明,我们的方法在基于医疗器械进步协会(AAMI)标准对五种心律失常类别(N, SVEB, VEB, Q和F)进行分类方面优于最先进的模型。我们的模型获得了0.98 (N)、0.95 (F)、0.98 (VEB)、0.90 (SVEB)和0.99 (Q)的精度分数,相应的召回值为1.00 (N)、0.74 (F)、0.93 (VEB)、0.72 (SVEB)和0.98 (Q)。FBSE-TQWT与模糊深度神经网络的集成代表了基于ecg的心律失常检测的重大进步,提高了准确性、鲁棒性和临床适用性。特别是在区分少数类,如室上异位拍(SVEB)和融合拍(F)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical engineering advances
Biomedical engineering advances Bioengineering, Biomedical Engineering
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信