Hamid Reza Tohidvand , Alexis White , Ali Khosravi , Paolo Celli
{"title":"Tailoring asymmetry for anisotropic friction in kirigami metamaterial skins with pop-up folding hinges","authors":"Hamid Reza Tohidvand , Alexis White , Ali Khosravi , Paolo Celli","doi":"10.1016/j.ijmecsci.2025.110258","DOIUrl":null,"url":null,"abstract":"<div><div>Kirigami metamaterial sheets and tubes, owing to their capacity to undergo large elastic deformations while developing three-dimensional surface textures, have enormous potential as skins for soft robots. Here, we propose to use kirigami skins with folding hinges in this same context. These recently-introduced kirigami feature counter-rotating panels connected by pop-up folding hinges. So far, researchers have only explored auxetic and highly-symmetric versions of such patterns. Yet, some of these attributes have to be relaxed in order to explore their full potential as robotic skins. Thus, we parameterize these patterns and relax symmetry constraints, with the goal of using this same platform to obtain a wide range of shape-morphing behaviors. We derive kinematic formulas to explore the vast symmetry-enabled design space. We then use numerical simulations and experiments to validate the kinematic predictions and to explore the morphing mechanics of tubular skins. Finally, via experiments, we provide preliminary evidence of the anisotropic friction enabled by patterns with asymmetric pop-ups. We therefore demonstrate that it is possible to tailor parameters in kirigami with folding hinges to obtain skins that globally expand or contract due to axial elongation, and that present asymmetric pop-ups that yield anisotropic friction — the most desired attribute for one-way locomotion of soft robots.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"296 ","pages":"Article 110258"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325003443","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kirigami metamaterial sheets and tubes, owing to their capacity to undergo large elastic deformations while developing three-dimensional surface textures, have enormous potential as skins for soft robots. Here, we propose to use kirigami skins with folding hinges in this same context. These recently-introduced kirigami feature counter-rotating panels connected by pop-up folding hinges. So far, researchers have only explored auxetic and highly-symmetric versions of such patterns. Yet, some of these attributes have to be relaxed in order to explore their full potential as robotic skins. Thus, we parameterize these patterns and relax symmetry constraints, with the goal of using this same platform to obtain a wide range of shape-morphing behaviors. We derive kinematic formulas to explore the vast symmetry-enabled design space. We then use numerical simulations and experiments to validate the kinematic predictions and to explore the morphing mechanics of tubular skins. Finally, via experiments, we provide preliminary evidence of the anisotropic friction enabled by patterns with asymmetric pop-ups. We therefore demonstrate that it is possible to tailor parameters in kirigami with folding hinges to obtain skins that globally expand or contract due to axial elongation, and that present asymmetric pop-ups that yield anisotropic friction — the most desired attribute for one-way locomotion of soft robots.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.