Mohamed Abouyehia , Agustí Egea-Àlvarez , Khaled H. Ahmed
{"title":"Evaluating inertia estimation methods in low-inertia power systems: A comprehensive review with analytic hierarchy process-based ranking","authors":"Mohamed Abouyehia , Agustí Egea-Àlvarez , Khaled H. Ahmed","doi":"10.1016/j.rser.2025.115794","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a comprehensive review of inertia estimation methods, with a particular emphasis on the challenges posed by the integration of renewable energy sources (RESs). It examines a broad spectrum of inertia estimation methods, ranging from traditional swing equation-based methods to cutting-edge advancements such as machine learning and real-time analytics. These estimation methods are systematically categorised and evaluated based on key performance metrics including accuracy, simplicity, computational efficiency, and robustness against noise. The analytic hierarchy process (AHP) is used to identify the most suitable methods for low-inertia systems with high renewable energy penetration. The evaluation also includes an assessment of the temporal operational modes and the implementation requirements for the estimation methods. This leads to detailed recommendations on the most appropriate application environments for each method, considering factors such as system scale and generation mix. Existing challenges and future directions related to inertia estimation are also discussed.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115794"},"PeriodicalIF":16.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125004678","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides a comprehensive review of inertia estimation methods, with a particular emphasis on the challenges posed by the integration of renewable energy sources (RESs). It examines a broad spectrum of inertia estimation methods, ranging from traditional swing equation-based methods to cutting-edge advancements such as machine learning and real-time analytics. These estimation methods are systematically categorised and evaluated based on key performance metrics including accuracy, simplicity, computational efficiency, and robustness against noise. The analytic hierarchy process (AHP) is used to identify the most suitable methods for low-inertia systems with high renewable energy penetration. The evaluation also includes an assessment of the temporal operational modes and the implementation requirements for the estimation methods. This leads to detailed recommendations on the most appropriate application environments for each method, considering factors such as system scale and generation mix. Existing challenges and future directions related to inertia estimation are also discussed.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.