Zhuan Zhao , Dongsheng Jiang , Yi Chen , Huan Zhang , Ruifang Wang , Shaolong Li , Jianxun Song , Yusi Che , Jilin He
{"title":"K3NbF7's electrochemical characteristics in the NaCl-KCl molten salt system at the Mo electrode","authors":"Zhuan Zhao , Dongsheng Jiang , Yi Chen , Huan Zhang , Ruifang Wang , Shaolong Li , Jianxun Song , Yusi Che , Jilin He","doi":"10.1016/j.elecom.2025.107943","DOIUrl":null,"url":null,"abstract":"<div><div>To explore the electrochemical behavior of Nb (IV) for form Nb metal, molten salt electrolysis was carried out in an NaCl-KCl melt containing K<sub>3</sub>NbF<sub>7</sub> at 750 °C. It was discovered that Nb (IV) reduces in three stages: Nb(IV)➔Nb(III)➔Nb(II)➔Nb,and reduction process of Nb(IV)➔Nb(III) was irreversible process controlled by diffusion mechanism. The instantaneous nucleation of niobium on the molybdenum electrode is observed in the KCl-NaCl-K<sub>3</sub>NbF<sub>7</sub> melt, which occurs at a potential of −3.06 V vs. Cl<sub>2</sub>/Cl<sup>−</sup> and a temperature of 750 °C, the niobium metal was deposited on Mo wire cathode by constant potential electrolysis, resulting in a high purity of 98.63 %.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"176 ","pages":"Article 107943"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000827","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the electrochemical behavior of Nb (IV) for form Nb metal, molten salt electrolysis was carried out in an NaCl-KCl melt containing K3NbF7 at 750 °C. It was discovered that Nb (IV) reduces in three stages: Nb(IV)➔Nb(III)➔Nb(II)➔Nb,and reduction process of Nb(IV)➔Nb(III) was irreversible process controlled by diffusion mechanism. The instantaneous nucleation of niobium on the molybdenum electrode is observed in the KCl-NaCl-K3NbF7 melt, which occurs at a potential of −3.06 V vs. Cl2/Cl− and a temperature of 750 °C, the niobium metal was deposited on Mo wire cathode by constant potential electrolysis, resulting in a high purity of 98.63 %.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.