Choosability with union separation of planar graphs without intersecting triangles

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Xinhong Pang, Min Chen
{"title":"Choosability with union separation of planar graphs without intersecting triangles","authors":"Xinhong Pang,&nbsp;Min Chen","doi":"10.1016/j.amc.2025.129493","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph, and let <span><math><mi>k</mi><mo>,</mo><mi>s</mi></math></span> be two positive integers. A <em>k</em>-list assignment of <em>G</em> is called a <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>+</mo><mi>s</mi><mo>)</mo></math></span>-list assignment if, for any two adjacent vertices <em>u</em> and <em>v</em>, <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>k</mi><mo>+</mo><mi>s</mi></math></span>. A graph <em>G</em> is said to be <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>+</mo><mi>s</mi><mo>)</mo></math></span>-choosable if, for every given <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>+</mo><mi>s</mi><mo>)</mo></math></span>-list assignment, it always admits a proper coloring <em>π</em> such that <span><math><mi>π</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>∈</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> for every <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we demonstrate that every planar graph without intersecting triangles is <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span>-choosable. This strengthens a result which asserts that every triangle-free planar graph is <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span>-choosable.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"502 ","pages":"Article 129493"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500219X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph, and let k,s be two positive integers. A k-list assignment of G is called a (k,k+s)-list assignment if, for any two adjacent vertices u and v, |L(u)L(v)|k+s. A graph G is said to be (k,k+s)-choosable if, for every given (k,k+s)-list assignment, it always admits a proper coloring π such that π(v)L(v) for every vV(G). In this paper, we demonstrate that every planar graph without intersecting triangles is (3,7)-choosable. This strengthens a result which asserts that every triangle-free planar graph is (3,7)-choosable.
无相交三角形的平面图形的联合分离的可选择性
设G是一个图,k,s是两个正整数。G的k-list赋值称为(k,k+s)-list赋值,如果对于任意两个相邻的顶点u和v, |L(u)∪L(v)|≥k+s。图G是(k,k+s)可选的,如果对于每一个给定的(k,k+s)表赋值,它总是允许一个适当的着色π,使得π(v)∈L(v)对于每一个v∈v (G)。在本文中,我们证明了每一个没有三角形相交的平面图形都是(3,7)可选的。这加强了一个结论,即断言每个无三角形平面图都是(3,7)可选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信