The rabies virus matrix protein (RABV M) interacts with host histone deacetylase 6 (HDAC6) to activate the MEK/ ERK signaling pathway and enhance viral replication
Juanbin Yin , Shasha Wang , Zhixiong Zhang , Junwei Ge , Qiang Zhang , Yuefeng Sun , Xiangping Yin , Xiangwei Wang
{"title":"The rabies virus matrix protein (RABV M) interacts with host histone deacetylase 6 (HDAC6) to activate the MEK/ ERK signaling pathway and enhance viral replication","authors":"Juanbin Yin , Shasha Wang , Zhixiong Zhang , Junwei Ge , Qiang Zhang , Yuefeng Sun , Xiangping Yin , Xiangwei Wang","doi":"10.1016/j.vetmic.2025.110537","DOIUrl":null,"url":null,"abstract":"<div><div>Rabies virus (RABV) is the causative agent of rabies, posing a severe threat to human and animal health. The matrix (M) protein of RABV plays crucial roles during viral infection. In this study, we identified RABV M protein interacted with host histone deacetylase 6 (HDAC6) through a combination of immunoprecipitation and mass spectrometry analysis. Specifically, the catalytic domains of HDAC6 (amino acids 435–835) was shown to be critical for the interaction between HDAC6 and the RABV M protein. Overexpression of HDAC6 significantly enhanced RABV replication, whereas inhibition of HDAC6 expression or its deacetylase activity had the opposite effect,indicating that HDAC6 is a positive regulator of RABV replication. We further determined that RABV infection actives the MEK/ERK pathway, and inhibition of this pathway with U0126 significantly reduced viral titers. Moreover, HDAC6 positively regulated MEK/ERK pathway activation in a manner independent of its deacetylase activity but dependent on the presence of HDAC6 during virus infection. Finally, we demonstrated that co-expression of RABV M enhanced the role of HDAC6 in facilitating MEK/ERK pathway activation. Collectively, our findings demonstrate that RABV exploits the HDAC6-M interaction to hijack the MEK/ERK signaling axis, which is essential for viral replication. Notably, HDAC6 facilitates MEK/ERK activation in a deacetylase activity-independent manner, revealing a novel mechanism by which viruses manipulate host machinery. These results highlight HDAC6 as a potential therapeutic target for combating rabies.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"305 ","pages":"Article 110537"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525001725","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rabies virus (RABV) is the causative agent of rabies, posing a severe threat to human and animal health. The matrix (M) protein of RABV plays crucial roles during viral infection. In this study, we identified RABV M protein interacted with host histone deacetylase 6 (HDAC6) through a combination of immunoprecipitation and mass spectrometry analysis. Specifically, the catalytic domains of HDAC6 (amino acids 435–835) was shown to be critical for the interaction between HDAC6 and the RABV M protein. Overexpression of HDAC6 significantly enhanced RABV replication, whereas inhibition of HDAC6 expression or its deacetylase activity had the opposite effect,indicating that HDAC6 is a positive regulator of RABV replication. We further determined that RABV infection actives the MEK/ERK pathway, and inhibition of this pathway with U0126 significantly reduced viral titers. Moreover, HDAC6 positively regulated MEK/ERK pathway activation in a manner independent of its deacetylase activity but dependent on the presence of HDAC6 during virus infection. Finally, we demonstrated that co-expression of RABV M enhanced the role of HDAC6 in facilitating MEK/ERK pathway activation. Collectively, our findings demonstrate that RABV exploits the HDAC6-M interaction to hijack the MEK/ERK signaling axis, which is essential for viral replication. Notably, HDAC6 facilitates MEK/ERK activation in a deacetylase activity-independent manner, revealing a novel mechanism by which viruses manipulate host machinery. These results highlight HDAC6 as a potential therapeutic target for combating rabies.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.