Kaku Mahendra, Mattur C. Narasimhan, Srikanth Rathod, Amit Kumar Das, Gundupalli Bhanu Prakash
{"title":"Durability performance of one-part alkali-activated self-compacting concrete mixes under aggressive and elevated temperature conditions","authors":"Kaku Mahendra, Mattur C. Narasimhan, Srikanth Rathod, Amit Kumar Das, Gundupalli Bhanu Prakash","doi":"10.1016/j.scp.2025.102025","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for sustainable, high-performance materials in modern construction has driven the development of advanced concrete technologies. This study introduces one-part alkali-activated self-compacting concrete (OPASC) as a practical, safe, and user-friendly alternative to conventional Portland cement-based concretes. Selected mixes with compressive strengths exceeding 70 MPa were evaluated for durability under aggressive conditions, including extended exposure to 5 % sulfuric acid and 5 % magnesium sulfate up to 180 days. The thermal stability of these candidate mixes was also assessed by subjecting the mixes to sustained temperatures ranging from 200 °C to 800 °C. Chloride-ion resistance of these mixes was examined under bulk diffusion tests. Key durability indicators, including water absorption, permeable voids, and sorptivity, were quantified to evaluate matrix impermeability. The results revealed compressive strength losses of 25–32 % under acid exposure, 7–15 % under sulfate exposure, and 30–42 % under thermal exposure, with chloride diffusion coefficients ranging from 0.21 × 10<sup>−12</sup> to 0.32 × 10<sup>−12</sup> m<sup>2</sup>/s, indicating high resistance to ionic ingress. The mixes also exhibited low water absorption (3–4.5 %), lower soptivities (0.0024–0.0013 mm/s<sup>1/2</sup>), and much reduced permeable voids (4.3–5.5 %), reflecting an impermeable, dense matrix. Microstructural analyses using SEM-EDS and XRD revealed that degradation under acid and sulfate conditions is primarily attributable to the decalcification of C/N-A-S-H gels, accompanied by the recrystallization of stable aluminosilicate phases. Finally, the environmental sustainability evaluation, which considered both embodied energy and carbon footprint, verified the superior environmental friendliness of OPASC mixes relative to conventional concrete. These findings confirm that OPASC exhibits superior chemical and thermal durability, reduced permeability, and enhanced resilience, thereby establishing it as a sustainable and practical solution for modern infrastructure applications.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"45 ","pages":"Article 102025"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554125001238","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for sustainable, high-performance materials in modern construction has driven the development of advanced concrete technologies. This study introduces one-part alkali-activated self-compacting concrete (OPASC) as a practical, safe, and user-friendly alternative to conventional Portland cement-based concretes. Selected mixes with compressive strengths exceeding 70 MPa were evaluated for durability under aggressive conditions, including extended exposure to 5 % sulfuric acid and 5 % magnesium sulfate up to 180 days. The thermal stability of these candidate mixes was also assessed by subjecting the mixes to sustained temperatures ranging from 200 °C to 800 °C. Chloride-ion resistance of these mixes was examined under bulk diffusion tests. Key durability indicators, including water absorption, permeable voids, and sorptivity, were quantified to evaluate matrix impermeability. The results revealed compressive strength losses of 25–32 % under acid exposure, 7–15 % under sulfate exposure, and 30–42 % under thermal exposure, with chloride diffusion coefficients ranging from 0.21 × 10−12 to 0.32 × 10−12 m2/s, indicating high resistance to ionic ingress. The mixes also exhibited low water absorption (3–4.5 %), lower soptivities (0.0024–0.0013 mm/s1/2), and much reduced permeable voids (4.3–5.5 %), reflecting an impermeable, dense matrix. Microstructural analyses using SEM-EDS and XRD revealed that degradation under acid and sulfate conditions is primarily attributable to the decalcification of C/N-A-S-H gels, accompanied by the recrystallization of stable aluminosilicate phases. Finally, the environmental sustainability evaluation, which considered both embodied energy and carbon footprint, verified the superior environmental friendliness of OPASC mixes relative to conventional concrete. These findings confirm that OPASC exhibits superior chemical and thermal durability, reduced permeability, and enhanced resilience, thereby establishing it as a sustainable and practical solution for modern infrastructure applications.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.