Learning underspecified models

IF 1.4 3区 经济学 Q3 ECONOMICS
In-Koo Cho , Jonathan Libgober
{"title":"Learning underspecified models","authors":"In-Koo Cho ,&nbsp;Jonathan Libgober","doi":"10.1016/j.jet.2025.106015","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines learning dynamics under non-parametric model uncertainty. We choose the monopolistic profit maximization problem (<span><span>Myerson (1981)</span></span>) as our laboratory. We consider a monopolist who chooses a learning algorithm to select a price following a history, facing non-parametric model uncertainty about the probability distribution of the buyer's valuation and bearing the computational cost. We posit that the monopolist has a lexicographic preference over profit and computational complexity while seeking an <em>ϵ dominant</em> algorithm that prescribes an <em>ϵ</em> best response against any cumulative distribution function of the buyer's valuation for any small <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>. We construct a simplest <em>ϵ</em> dominant algorithm among all dominant algorithms when the distribution of the buyer's valuation satisfies the increasing hazard rate property. Our algorithm recursively estimates two parameters of the distribution, even if the actual distribution is parameterized by many more variables. The monopolist chooses a misspecified model to save computational cost while learning the true optimal decision uniformly over the set of feasible distributions.</div></div>","PeriodicalId":48393,"journal":{"name":"Journal of Economic Theory","volume":"226 ","pages":"Article 106015"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Theory","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022053125000614","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines learning dynamics under non-parametric model uncertainty. We choose the monopolistic profit maximization problem (Myerson (1981)) as our laboratory. We consider a monopolist who chooses a learning algorithm to select a price following a history, facing non-parametric model uncertainty about the probability distribution of the buyer's valuation and bearing the computational cost. We posit that the monopolist has a lexicographic preference over profit and computational complexity while seeking an ϵ dominant algorithm that prescribes an ϵ best response against any cumulative distribution function of the buyer's valuation for any small ϵ>0. We construct a simplest ϵ dominant algorithm among all dominant algorithms when the distribution of the buyer's valuation satisfies the increasing hazard rate property. Our algorithm recursively estimates two parameters of the distribution, even if the actual distribution is parameterized by many more variables. The monopolist chooses a misspecified model to save computational cost while learning the true optimal decision uniformly over the set of feasible distributions.
学习未明确的模型
本文研究了非参数模型不确定性下的学习动力学。我们选择垄断利润最大化问题(迈尔森(1981))作为我们的实验室。我们考虑一个垄断者,他选择一种学习算法来根据历史选择价格,面对关于买方估值概率分布的非参数模型不确定性,并承担计算成本。我们假设垄断者对利润和计算复杂性有字典上的偏好,同时寻求一种占主导地位的算法,该算法规定了针对任何小的买方估值的任何累积分布函数的最佳响应。ϵ>0。当买方估价的分布满足风险率递增性质时,我们在所有主导算法中构造了一个最简单的主导算法。我们的算法递归地估计分布的两个参数,即使实际分布是由更多的变量参数化的。垄断者为了节省计算成本而选择了一个错误的模型,同时在可行分布集合上统一地学习真正的最优决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
12.50%
发文量
135
期刊介绍: The Journal of Economic Theory publishes original research on economic theory and emphasizes the theoretical analysis of economic models, including the study of related mathematical techniques. JET is the leading journal in economic theory. It is also one of nine core journals in all of economics. Among these journals, the Journal of Economic Theory ranks fourth in impact-adjusted citations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信