Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions
{"title":"Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions","authors":"Niloufar Delfan , Fatemeh Abbasi , Negar Emamzadeh , Amirmohammad Bahri , Mansour Parvaresh Rizi , Alireza Motamedi , Behzad Moshiri , Arad Iranmehr","doi":"10.1016/j.jocn.2025.111243","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cerebral aneurysms pose a significant risk to patient safety, particularly when ruptured, emphasizing the need for early detection and accurate prediction. Traditional diagnostic methods, reliant on clinician-based evaluations, face challenges in sensitivity and consistency, prompting the exploration of deep learning (DL) systems for improved performance.</div></div><div><h3>Methods</h3><div>This systematic review and meta-analysis assessed the performance of DL models in detecting and predicting intracranial aneurysms compared to clinician-based evaluations. Imaging modalities included CT angiography (CTA), digital subtraction angiography (DSA), and time-of-flight MR angiography (TOF-MRA). Data on lesion-wise sensitivity, specificity, and the impact of DL assistance on clinician performance were analyzed. Subgroup analyses evaluated DL sensitivity by aneurysm size and location, and interrater agreement was measured using Fleiss’ κ.</div></div><div><h3>Results</h3><div>DL systems achieved an overall lesion-wise sensitivity of 90 % and specificity of 94 %, outperforming human diagnostics. Clinician specificity improved significantly with DL assistance, increasing from 83 % to 85 % in the patient-wise scenario and from 93 % to 95 % in the lesion-wise scenario. Similarly, clinician sensitivity also showed notable improvement with DL assistance, rising from 82 % to 96 % in the patient-wise scenario and from 82 % to 88 % in the lesion-wise scenario. Subgroup analysis showed DL sensitivity varied with aneurysm size and location, reaching 100 % for aneurysms larger than 10 mm. Additionally, DL assistance improved interrater agreement among clinicians, with Fleiss’ κ increasing from 0.668 to 0.862.</div></div><div><h3>Conclusions</h3><div>DL models demonstrate transformative potential in managing cerebral aneurysms by enhancing diagnostic accuracy, reducing missed cases, and supporting clinical decision-making. However, further validation in diverse clinical settings and seamless integration into standard workflows are necessary to fully realize the benefits of DL-driven diagnostics.</div></div>","PeriodicalId":15487,"journal":{"name":"Journal of Clinical Neuroscience","volume":"136 ","pages":"Article 111243"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967586825002152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Cerebral aneurysms pose a significant risk to patient safety, particularly when ruptured, emphasizing the need for early detection and accurate prediction. Traditional diagnostic methods, reliant on clinician-based evaluations, face challenges in sensitivity and consistency, prompting the exploration of deep learning (DL) systems for improved performance.
Methods
This systematic review and meta-analysis assessed the performance of DL models in detecting and predicting intracranial aneurysms compared to clinician-based evaluations. Imaging modalities included CT angiography (CTA), digital subtraction angiography (DSA), and time-of-flight MR angiography (TOF-MRA). Data on lesion-wise sensitivity, specificity, and the impact of DL assistance on clinician performance were analyzed. Subgroup analyses evaluated DL sensitivity by aneurysm size and location, and interrater agreement was measured using Fleiss’ κ.
Results
DL systems achieved an overall lesion-wise sensitivity of 90 % and specificity of 94 %, outperforming human diagnostics. Clinician specificity improved significantly with DL assistance, increasing from 83 % to 85 % in the patient-wise scenario and from 93 % to 95 % in the lesion-wise scenario. Similarly, clinician sensitivity also showed notable improvement with DL assistance, rising from 82 % to 96 % in the patient-wise scenario and from 82 % to 88 % in the lesion-wise scenario. Subgroup analysis showed DL sensitivity varied with aneurysm size and location, reaching 100 % for aneurysms larger than 10 mm. Additionally, DL assistance improved interrater agreement among clinicians, with Fleiss’ κ increasing from 0.668 to 0.862.
Conclusions
DL models demonstrate transformative potential in managing cerebral aneurysms by enhancing diagnostic accuracy, reducing missed cases, and supporting clinical decision-making. However, further validation in diverse clinical settings and seamless integration into standard workflows are necessary to fully realize the benefits of DL-driven diagnostics.
期刊介绍:
This International journal, Journal of Clinical Neuroscience, publishes articles on clinical neurosurgery and neurology and the related neurosciences such as neuro-pathology, neuro-radiology, neuro-ophthalmology and neuro-physiology.
The journal has a broad International perspective, and emphasises the advances occurring in Asia, the Pacific Rim region, Europe and North America. The Journal acts as a focus for publication of major clinical and laboratory research, as well as publishing solicited manuscripts on specific subjects from experts, case reports and other information of interest to clinicians working in the clinical neurosciences.