Hoang-Yang Lu , S. Pourmohammad Azizi , Shyi-Chyi Cheng
{"title":"Deep-SOR detection for massive MIMO systems","authors":"Hoang-Yang Lu , S. Pourmohammad Azizi , Shyi-Chyi Cheng","doi":"10.1016/j.aeue.2025.155815","DOIUrl":null,"url":null,"abstract":"<div><div>In massive MIMO systems, particularly in highly loaded scenarios where the number of transmit antennas approaches that of receive antennas, symbol detection faces significant challenges, including increased computational complexity and degraded performance. To address these issues, in the paper we propose a deep learning (DL)-assisted successive over-relaxation (SOR) detector. This detector utilizes two relaxation vectors to enhance performance, which are determined through DL training. Additionally, we introduce a convergence theorem and conduct simulations to validate their determination. Finally, simulation and complexity analysis results demonstrate that the proposed detector achieves superior performance with a moderate computational cost, especially in highly loaded scenarios.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"197 ","pages":"Article 155815"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125001566","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In massive MIMO systems, particularly in highly loaded scenarios where the number of transmit antennas approaches that of receive antennas, symbol detection faces significant challenges, including increased computational complexity and degraded performance. To address these issues, in the paper we propose a deep learning (DL)-assisted successive over-relaxation (SOR) detector. This detector utilizes two relaxation vectors to enhance performance, which are determined through DL training. Additionally, we introduce a convergence theorem and conduct simulations to validate their determination. Finally, simulation and complexity analysis results demonstrate that the proposed detector achieves superior performance with a moderate computational cost, especially in highly loaded scenarios.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.