Dendrite like nanorod bundles of cobalt phosphate electrodes for efficient water splitting and energy storage applications

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sushama M. Nikam , Suhas H. Sutar , Akbar I. Inamdar , Sarfraj H. Mujawar
{"title":"Dendrite like nanorod bundles of cobalt phosphate electrodes for efficient water splitting and energy storage applications","authors":"Sushama M. Nikam ,&nbsp;Suhas H. Sutar ,&nbsp;Akbar I. Inamdar ,&nbsp;Sarfraj H. Mujawar","doi":"10.1016/j.jpcs.2025.112808","DOIUrl":null,"url":null,"abstract":"<div><div>The design of multifunctional cost-effective electrode materials for energy storage and conversion are the most attractive and promising technologies for producing sustainable and clean energy. Herein, the cobalt phosphate electrodes are synthesized using a Successive Ionic Layer Adsorption and Reaction (SILAR) method on a nickel foam substrate with different cycle numbers such as 20, 40, 60, and 80. For comparison, we also fabricated pure cobalt hydroxide electrodes using similar experimental conditions. The electrochemical supercapacitor and oxygen evolution reaction electrocatalysis properties of these electrodes are systematically studied. The highest specific capacity of the optimized cobalt hydroxide and cobalt phosphate electrodes are found to be 455 and 895 F/g at a current density of 5 mA/cm<sup>2</sup>. Moreover, these electrodes also showed enhanced electrocatalytic activity for cobalt hydroxide and cobalt phosphate with overpotentials of 448 mV and 361 mV at a current density 20 mA/cm<sup>2</sup> respectively. The lower Tafel slope of 116 and 81 mV/dec<sup>1</sup> of cobalt hydroxide and cobalt phosphate indicated the faster reaction kinetics for oxygen evolution reaction. The experimental technique studied in this work provides insights onto the fabrication of the thin film electrodes via simple, easy, and cost-effective ways for energy generation and storage applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112808"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002604","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design of multifunctional cost-effective electrode materials for energy storage and conversion are the most attractive and promising technologies for producing sustainable and clean energy. Herein, the cobalt phosphate electrodes are synthesized using a Successive Ionic Layer Adsorption and Reaction (SILAR) method on a nickel foam substrate with different cycle numbers such as 20, 40, 60, and 80. For comparison, we also fabricated pure cobalt hydroxide electrodes using similar experimental conditions. The electrochemical supercapacitor and oxygen evolution reaction electrocatalysis properties of these electrodes are systematically studied. The highest specific capacity of the optimized cobalt hydroxide and cobalt phosphate electrodes are found to be 455 and 895 F/g at a current density of 5 mA/cm2. Moreover, these electrodes also showed enhanced electrocatalytic activity for cobalt hydroxide and cobalt phosphate with overpotentials of 448 mV and 361 mV at a current density 20 mA/cm2 respectively. The lower Tafel slope of 116 and 81 mV/dec1 of cobalt hydroxide and cobalt phosphate indicated the faster reaction kinetics for oxygen evolution reaction. The experimental technique studied in this work provides insights onto the fabrication of the thin film electrodes via simple, easy, and cost-effective ways for energy generation and storage applications.

Abstract Image

枝晶状纳米棒束状磷酸钴电极,用于高效的水分解和储能应用
设计用于能量储存和转换的多功能低成本电极材料是生产可持续清洁能源最具吸引力和前景的技术。本文采用连续离子层吸附和反应(SILAR)方法在泡沫镍基体上合成了磷酸钴电极,其循环次数为20、40、60和80。为了比较,我们也在类似的实验条件下制备了纯氢氧化钴电极。系统地研究了这些电极的电化学超级电容器性能和析氧反应电催化性能。在电流密度为5 mA/cm2时,优化后的氢氧化钴和磷酸钴电极的最高比容量分别为455和895 F/g。此外,在电流密度为20 mA/cm2时,这些电极对氢氧化钴和磷酸钴的过电位分别为448 mV和361 mV,电催化活性也有所增强。氢氧化钴和磷酸钴的Tafel斜率较低,分别为116和81 mV/dec1,表明析氧反应的反应动力学更快。在这项工作中研究的实验技术为薄膜电极的制造提供了见解,通过简单,容易和经济有效的方法用于能量产生和存储应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信