{"title":"Global semigroup of conservative weak solutions of the two-component Novikov equation","authors":"K.H. Karlsen , Ya. Rybalko","doi":"10.1016/j.nonrwa.2025.104393","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Cauchy problem for the two-component Novikov system with initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> such that the product <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> belongs to <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. We construct a global semigroup of conservative weak solutions. We also discuss the potential concentration phenomena of <span><math><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></math></span>, <span><math><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></math></span>, and <span><math><mrow><mfenced><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mi>d</mi><mi>x</mi></mrow></math></span>, which contribute to wave-breaking and may occur for a set of time with nonzero measure. Finally, we establish the continuity of the data-to-solution map in the uniform norm.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104393"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000793","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Cauchy problem for the two-component Novikov system with initial data in such that the product belongs to . We construct a global semigroup of conservative weak solutions. We also discuss the potential concentration phenomena of , , and , which contribute to wave-breaking and may occur for a set of time with nonzero measure. Finally, we establish the continuity of the data-to-solution map in the uniform norm.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.