Megan M. John , Melissa A. Pratt , Jazmine D.W. Yaeger , Renée A. Brummels , Leighton J. Ledesma , Lauren S. Meyer , RaeAnn L. Hartwig , Gabriel L. Legner , Nathan G. Gilbertson , Patrick J. Ronan , Cliff H. Summers
{"title":"Aggression as a contributing factor to social defeat and stress vulnerability","authors":"Megan M. John , Melissa A. Pratt , Jazmine D.W. Yaeger , Renée A. Brummels , Leighton J. Ledesma , Lauren S. Meyer , RaeAnn L. Hartwig , Gabriel L. Legner , Nathan G. Gilbertson , Patrick J. Ronan , Cliff H. Summers","doi":"10.1016/j.ynstr.2025.100728","DOIUrl":null,"url":null,"abstract":"<div><div>The Stress Alternatives Model (SAM) is a social defeat/avoidance paradigm developed in our lab that reveals evolutionarily conserved escape responses in fish, hamsters, rats, and mice. During social interactions in a neutral arena, available escape routes sized exclusively for smaller test animals allow for avoidance of a social aggressor. This 4-day social interaction protocol pairs C57BL/6N test mice and a larger, novel, aggressive CD1 mouse each day. Although escape portals are available, and the CD1 aggressor is unremittingly antagonistic, only half of the mice tested utilize the escape tunnels, while escape latency dramatically decreases over time in mice that escape. We sought to determine whether aggression provided the trigger of two stress-related phenotypes that are produced by the SAM. The results suggest threat of aggression, determined by the first attack, is necessary for phenotype development, but the intensity of aggression over time does not determine which phenotype is chosen. Phenotypes are determined by responsiveness and counterbalanced neurocircuits that promote stress-resilience or vulnerability. These stress neurocircuits are modulated by orexins, through orexin 1 and 2 receptors (Orx<sub>1</sub>, Orx<sub>2</sub>), which promote pro-stress behaviors. In the primary pro-stress neurocircuitry of the aBLA, we examined Akt and mToR gene expression in stress-resilient (Escape) and -vulnerable (Stay) mice. The quantity of <em>Hcrtr</em><sub><em>1</em></sub> mRNA/cell was elevated in Stay mice, as were the mRNA/cell numbers for <em>Mtor</em>. However, the increase of <em>Akt</em><sub><em>2</em></sub> and <em>Mtor</em> mRNA/cell was not evident specifically in <em>Hcrtr</em><sub><em>1</em></sub> expressing cells, suggesting these molecular markers of neuroplasticity are not being activated by Orx<sub>1</sub> receptors.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"36 ","pages":"Article 100728"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289525000220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Stress Alternatives Model (SAM) is a social defeat/avoidance paradigm developed in our lab that reveals evolutionarily conserved escape responses in fish, hamsters, rats, and mice. During social interactions in a neutral arena, available escape routes sized exclusively for smaller test animals allow for avoidance of a social aggressor. This 4-day social interaction protocol pairs C57BL/6N test mice and a larger, novel, aggressive CD1 mouse each day. Although escape portals are available, and the CD1 aggressor is unremittingly antagonistic, only half of the mice tested utilize the escape tunnels, while escape latency dramatically decreases over time in mice that escape. We sought to determine whether aggression provided the trigger of two stress-related phenotypes that are produced by the SAM. The results suggest threat of aggression, determined by the first attack, is necessary for phenotype development, but the intensity of aggression over time does not determine which phenotype is chosen. Phenotypes are determined by responsiveness and counterbalanced neurocircuits that promote stress-resilience or vulnerability. These stress neurocircuits are modulated by orexins, through orexin 1 and 2 receptors (Orx1, Orx2), which promote pro-stress behaviors. In the primary pro-stress neurocircuitry of the aBLA, we examined Akt and mToR gene expression in stress-resilient (Escape) and -vulnerable (Stay) mice. The quantity of Hcrtr1 mRNA/cell was elevated in Stay mice, as were the mRNA/cell numbers for Mtor. However, the increase of Akt2 and Mtor mRNA/cell was not evident specifically in Hcrtr1 expressing cells, suggesting these molecular markers of neuroplasticity are not being activated by Orx1 receptors.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.