Miguel Paredes-Barrada , Annemieke Mathissen , Roland A. van der Molen , Pablo J. Jiménez-Huesa , Machiel Eduardo Polano , Stefano Donati , Miriam Abele , Christina Ludwig , Richard van Kranenburg , Nico J. Claassens
{"title":"Awakening of the RuMP cycle for partial methylotrophy in the thermophile Parageobacillus thermoglucosidasius","authors":"Miguel Paredes-Barrada , Annemieke Mathissen , Roland A. van der Molen , Pablo J. Jiménez-Huesa , Machiel Eduardo Polano , Stefano Donati , Miriam Abele , Christina Ludwig , Richard van Kranenburg , Nico J. Claassens","doi":"10.1016/j.ymben.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism <em>Parageobacillus thermoglucosidasius.</em> We engineered <em>P. thermoglucosidasius</em> to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 145-157"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000667","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism Parageobacillus thermoglucosidasius. We engineered P. thermoglucosidasius to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.