Evolution in microstructure and tensile properties of a novel Al-Mg-Si-Cu alloy under peak-aged condition during fatigue process

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ni Tian , Peihong Zhang , Tianxiang Zhang , Yinzhu Li , Yaozhong Zhang , Yiran Zhou , Quanxin Yan , Gang Zhao , Gaowu Qin
{"title":"Evolution in microstructure and tensile properties of a novel Al-Mg-Si-Cu alloy under peak-aged condition during fatigue process","authors":"Ni Tian ,&nbsp;Peihong Zhang ,&nbsp;Tianxiang Zhang ,&nbsp;Yinzhu Li ,&nbsp;Yaozhong Zhang ,&nbsp;Yiran Zhou ,&nbsp;Quanxin Yan ,&nbsp;Gang Zhao ,&nbsp;Gaowu Qin","doi":"10.1016/j.matchar.2025.115086","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of high-speed trains towards higher speeds (400 km/h and above) and longer service life, the fatigue performance of its body materials has become a critical factor limiting their safety performance. Therefore, the second-phase particles, grains, dislocations, strength, and elongation of peak-aged Al-0.81Mg-0.84Si-0.53Cu alloy sheets for the body of next-generation high-speed trains were investigated after fatigue loading at 28 MPa/280 MPa for 5 × 10<sup>3</sup>, 1 × 10<sup>4</sup>, 5 × 10<sup>4</sup>, 1 × 10<sup>5</sup>, and 1.3 × 10<sup>5</sup> cycles. There were no obvious changes in the second-phase particles and grains of the alloy sheet; however, the dislocation density increased monotonically, and the distribution of dislocations varied with an increase in the number of fatigue cycles. The relationship between the mechanical properties of the alloy sheet and fatigue cycles was characterized by four stages: fatigue hardening stage (&lt;5 × 10<sup>3</sup> cycles), fatigue turbulent stage (5 × 10<sup>3</sup> cycles to 1 × 10<sup>4</sup> cycles), fatigue stable stage (1 × 10<sup>4</sup> cycles to 1 × 10<sup>5</sup> cycles), and fatigue and buckling stage (1 × 10<sup>5</sup> to 1.3 × 10<sup>5</sup> cycles). The results can provide basic data and a theoretical basis for objectively predicting the safe service life of Al-0.81Mg-0.84Si-0.53Cu alloy for high-speed trains.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"224 ","pages":"Article 115086"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325003754","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of high-speed trains towards higher speeds (400 km/h and above) and longer service life, the fatigue performance of its body materials has become a critical factor limiting their safety performance. Therefore, the second-phase particles, grains, dislocations, strength, and elongation of peak-aged Al-0.81Mg-0.84Si-0.53Cu alloy sheets for the body of next-generation high-speed trains were investigated after fatigue loading at 28 MPa/280 MPa for 5 × 103, 1 × 104, 5 × 104, 1 × 105, and 1.3 × 105 cycles. There were no obvious changes in the second-phase particles and grains of the alloy sheet; however, the dislocation density increased monotonically, and the distribution of dislocations varied with an increase in the number of fatigue cycles. The relationship between the mechanical properties of the alloy sheet and fatigue cycles was characterized by four stages: fatigue hardening stage (<5 × 103 cycles), fatigue turbulent stage (5 × 103 cycles to 1 × 104 cycles), fatigue stable stage (1 × 104 cycles to 1 × 105 cycles), and fatigue and buckling stage (1 × 105 to 1.3 × 105 cycles). The results can provide basic data and a theoretical basis for objectively predicting the safe service life of Al-0.81Mg-0.84Si-0.53Cu alloy for high-speed trains.
一种新型Al-Mg-Si-Cu合金在疲劳过程中峰时效状态下的组织和拉伸性能演变
随着高速列车向更高速度(400km /h及以上)和更长的使用寿命发展,其车体材料的疲劳性能已成为限制其安全性能的关键因素。为此,研究了新一代高速列车车体用Al-0.81Mg-0.84Si-0.53Cu合金薄板在28 MPa/280 MPa、5 × 103、1 × 104、5 × 104、1 × 105和1.3 × 105次循环疲劳载荷下的第二相颗粒、晶粒、位错、强度和伸长率。合金板材的第二相颗粒和晶粒无明显变化;但位错密度单调增加,且位错分布随疲劳循环次数的增加而变化。合金板的力学性能与疲劳循环的关系表现为4个阶段:疲劳硬化阶段(5 × 103次)、疲劳湍流阶段(5 × 103 ~ 1 × 104次)、疲劳稳定阶段(1 × 104 ~ 1 × 105次)和疲劳屈曲阶段(1 × 105 ~ 1.3 × 105次)。研究结果可为客观预测高速列车用Al-0.81Mg-0.84Si-0.53Cu合金的安全使用寿命提供基础数据和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信