Development and optimization of an antibody-free nucleic acid lateral flow assay (AF-NALFA) as part of a molecular toolkit for visual readout of amplified Listeria monocytogenes DNA
Leonardo Lopes-Luz , Gabryele Cardoso Sampaio , Luana Michele Alves , Djairo Pastor Saavedra , Luana Simões da Mata , Ana Lídia Schröder , Lucas Carvalho Sucupira , Matheus Bernardes Torres Fogaça , Paula Correa Neddermeyer , Mariane Martins de Araújo Stefani , Samira Bührer-Sékula
{"title":"Development and optimization of an antibody-free nucleic acid lateral flow assay (AF-NALFA) as part of a molecular toolkit for visual readout of amplified Listeria monocytogenes DNA","authors":"Leonardo Lopes-Luz , Gabryele Cardoso Sampaio , Luana Michele Alves , Djairo Pastor Saavedra , Luana Simões da Mata , Ana Lídia Schröder , Lucas Carvalho Sucupira , Matheus Bernardes Torres Fogaça , Paula Correa Neddermeyer , Mariane Martins de Araújo Stefani , Samira Bührer-Sékula","doi":"10.1016/j.ymeth.2025.04.013","DOIUrl":null,"url":null,"abstract":"<div><div><em>Listeria monocytogenes</em> is a Gram-positive foodborne pathogen responsible for listeriosis, a severe disease with high mortality in immunocompromised individuals. Rapid and accurate detection in food samples is essential for food safety. In this study, we developed and optimized an Antibody-Free Nucleic Acid Lateral Flow Assay (AF-NALFA) as part of a molecular detection toolkit for the visual readout of amplified <em>L. monocytogenes hly</em>A gene, in combination with ultra-fast asymmetric PCR (aPCR) and oligonucleotide probe hybridization. Three critical parameters were optimized: oligonucleotide probe concentration on test and control lines, gold nanoparticle-probe conjugation ratio, and running buffer composition. In pure bacterial cultures, the limit of detection (LOD) of AF-NALFA was 12.62 copies for <em>L. monocytogenes</em> ATCC 7644, 8.68 copies for ATCC 19117, and 4.83 copies for ATCC 13932. These values were quantitatively assessed using qPCR, confirming the assay’s consistency in detecting low DNA copy numbers. The prototype demonstrated 100% specificity against 13 other bacterial species. Furthermore, it was successfully tested in artificially contaminated UHT milk after 1 year of storage at room temperature, detecting <em>L. monocytogenes</em> at 1–30 CFU/mL without DNA purification or selective enrichment. The AF-NALFA enabled visual detection of target ssDNA hybridization within 20 min, offering a rapid, cost-effective alternative to DNA detection methods requiring expensive equipment, specialized expertise, and time-consuming procedures. These findings highlight AF-NALFA’s potential as a complementary tool for <em>L. monocytogenes</em> surveillance, providing a practical solution for rapid screening in food safety laboratories and epidemiological monitoring.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"239 ","pages":"Pages 127-139"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001100","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen responsible for listeriosis, a severe disease with high mortality in immunocompromised individuals. Rapid and accurate detection in food samples is essential for food safety. In this study, we developed and optimized an Antibody-Free Nucleic Acid Lateral Flow Assay (AF-NALFA) as part of a molecular detection toolkit for the visual readout of amplified L. monocytogenes hlyA gene, in combination with ultra-fast asymmetric PCR (aPCR) and oligonucleotide probe hybridization. Three critical parameters were optimized: oligonucleotide probe concentration on test and control lines, gold nanoparticle-probe conjugation ratio, and running buffer composition. In pure bacterial cultures, the limit of detection (LOD) of AF-NALFA was 12.62 copies for L. monocytogenes ATCC 7644, 8.68 copies for ATCC 19117, and 4.83 copies for ATCC 13932. These values were quantitatively assessed using qPCR, confirming the assay’s consistency in detecting low DNA copy numbers. The prototype demonstrated 100% specificity against 13 other bacterial species. Furthermore, it was successfully tested in artificially contaminated UHT milk after 1 year of storage at room temperature, detecting L. monocytogenes at 1–30 CFU/mL without DNA purification or selective enrichment. The AF-NALFA enabled visual detection of target ssDNA hybridization within 20 min, offering a rapid, cost-effective alternative to DNA detection methods requiring expensive equipment, specialized expertise, and time-consuming procedures. These findings highlight AF-NALFA’s potential as a complementary tool for L. monocytogenes surveillance, providing a practical solution for rapid screening in food safety laboratories and epidemiological monitoring.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.