{"title":"Ester-Guided Dynamic Li+ Solvation Enables Plating-Less, Fast-Charging Li-Ion Batteries","authors":"Soyeon Lee, Hyuntae Lee, Hongjun Chang, Minhong Lim, Mingyu Lee, Bonhyeop Koo, Ko-Eun Ryou, Seong-Min Bak, Hochun Lee, Sujong Chae, Janghyuk Moon* and Hongkyung Lee*, ","doi":"10.1021/acsnano.5c0002710.1021/acsnano.5c00027","DOIUrl":null,"url":null,"abstract":"<p >The extremely fast charging (XFC) of Li-ion cells is an urgent milestone in promoting the widespread adoption of electric vehicles. However, EV-targeted cell designs with thicker electrodes compromise the XFC capability when conventional electrolytes are used, leading to hazardous Li plating and a considerable loss in Li inventory. This study presents noncarbonate solvents for superionic conductive, low-viscosity high-concentration electrolytes (HCEs). A methyl acetate (MA)-based HCE with a solid–electrolyte interphase (SEI)-stabilizing additive (3MF) was comparatively examined using a dimethyl carbonate (DMC) solvent, which has an extra oxygen atom in the molecule, across all aspects, including solvation structures, interfacial kinetics, and bulk Li<sup>+</sup> transport. The 3MF electrolyte demonstrated outstanding XFC performance in a pouch cell (1.2 Ah) format and outperformed DMC-based HCE, showcasing improved cycling performance at low temperatures (−20 °C), 10 C-rate (6-min charging), and with a thick electrode (6.0 mAh cm<sup>–2</sup>). By satisfying the energy barrier thresholds for Li<sup>+</sup> desolvation and Li<sup>+</sup> migration across the SEI, MA can guide smaller solvation clusters and serve as a molecular lubricant along the Li<sup>+</sup> percolation pathway in the HCE framework, which is crucial for boosting XFC capabilities.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 16","pages":"15789–15802 15789–15802"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The extremely fast charging (XFC) of Li-ion cells is an urgent milestone in promoting the widespread adoption of electric vehicles. However, EV-targeted cell designs with thicker electrodes compromise the XFC capability when conventional electrolytes are used, leading to hazardous Li plating and a considerable loss in Li inventory. This study presents noncarbonate solvents for superionic conductive, low-viscosity high-concentration electrolytes (HCEs). A methyl acetate (MA)-based HCE with a solid–electrolyte interphase (SEI)-stabilizing additive (3MF) was comparatively examined using a dimethyl carbonate (DMC) solvent, which has an extra oxygen atom in the molecule, across all aspects, including solvation structures, interfacial kinetics, and bulk Li+ transport. The 3MF electrolyte demonstrated outstanding XFC performance in a pouch cell (1.2 Ah) format and outperformed DMC-based HCE, showcasing improved cycling performance at low temperatures (−20 °C), 10 C-rate (6-min charging), and with a thick electrode (6.0 mAh cm–2). By satisfying the energy barrier thresholds for Li+ desolvation and Li+ migration across the SEI, MA can guide smaller solvation clusters and serve as a molecular lubricant along the Li+ percolation pathway in the HCE framework, which is crucial for boosting XFC capabilities.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.