Surface Laser Texturing and Alloying: Front-End Design Optimization of Zinc Metal Anode for Dendrite-Free Deposition

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Kang, Yi Yuan, Funian Mo* and Haibo Hu*, 
{"title":"Surface Laser Texturing and Alloying: Front-End Design Optimization of Zinc Metal Anode for Dendrite-Free Deposition","authors":"Peng Kang,&nbsp;Yi Yuan,&nbsp;Funian Mo* and Haibo Hu*,&nbsp;","doi":"10.1021/acsnano.5c0245010.1021/acsnano.5c02450","DOIUrl":null,"url":null,"abstract":"<p >A critical barrier to commercializing aqueous Zn-metal batteries lies in the dual challenges of dendritic Zn growth and parasitic side reactions at the anode/electrolyte interface. Here, this study presents a front-end design optimization strategy for Zn metal anodes (ZMAs), combining surface laser texturing with alloying treatment to stabilize the interfacial chemistry. Specifically, laser texturing creates a geometrically ordered microstructure on the Zn surface, while subsequent chemical permeation induces the in situ transformation of this microstructured layer into a CuZn<sub>5</sub> alloy, forming the LT-Zn@CuZn<sub>5</sub> anode. The geometrically ordered alloy coating homogenizes the electronic filed distribution across the zinc surface and enhances corrosion resistance. Thereby, the LT-Zn@CuZn<sub>5</sub> anode demonstrated optimized electrochemical reversibility, sustaining over 3000 cycles at 3 mA cm<sup>–2</sup>/1 mAh cm<sup>–2</sup>. This performance translates into a high improvement in the cycling behavior of the assembled Zn||I<sub>2</sub> soft pack battery, which acquired an initial capacity of 225.8 mAh g<sup>–1</sup> and retained 79.1% after 4000 cycles. In contrast, the counterpart employing untreated Zn foil started with a lower initial capacity of 180.7 mAh g<sup>–1</sup> and failed after less than 478 cycles. The demonstrated effective approach improves the front-end design strategy of ZMAs and contributes to the development of dendrite-free ZMAs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 16","pages":"15994–16010 15994–16010"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A critical barrier to commercializing aqueous Zn-metal batteries lies in the dual challenges of dendritic Zn growth and parasitic side reactions at the anode/electrolyte interface. Here, this study presents a front-end design optimization strategy for Zn metal anodes (ZMAs), combining surface laser texturing with alloying treatment to stabilize the interfacial chemistry. Specifically, laser texturing creates a geometrically ordered microstructure on the Zn surface, while subsequent chemical permeation induces the in situ transformation of this microstructured layer into a CuZn5 alloy, forming the LT-Zn@CuZn5 anode. The geometrically ordered alloy coating homogenizes the electronic filed distribution across the zinc surface and enhances corrosion resistance. Thereby, the LT-Zn@CuZn5 anode demonstrated optimized electrochemical reversibility, sustaining over 3000 cycles at 3 mA cm–2/1 mAh cm–2. This performance translates into a high improvement in the cycling behavior of the assembled Zn||I2 soft pack battery, which acquired an initial capacity of 225.8 mAh g–1 and retained 79.1% after 4000 cycles. In contrast, the counterpart employing untreated Zn foil started with a lower initial capacity of 180.7 mAh g–1 and failed after less than 478 cycles. The demonstrated effective approach improves the front-end design strategy of ZMAs and contributes to the development of dendrite-free ZMAs.

Abstract Image

表面激光织构与合金化:无枝晶沉积锌金属阳极的前端设计优化
水基锌金属电池商业化的关键障碍在于枝晶锌生长和阳极/电解质界面寄生副反应的双重挑战。本研究提出了一种Zn金属阳极(ZMAs)的前端设计优化策略,将表面激光织构与合金化处理相结合,以稳定界面化学。具体来说,激光变形在Zn表面产生几何有序的微观结构,而随后的化学渗透诱导该微观结构层原位转变为CuZn5合金,形成LT-Zn@CuZn5阳极。几何有序的合金涂层使锌表面的电子场分布均匀,提高了耐蚀性。因此,LT-Zn@CuZn5阳极表现出优化的电化学可逆性,在3 mA cm-2 /1 mAh cm-2下维持超过3000次循环。这种性能转化为对组装的Zn||I2软包电池的循环性能有很高的改善,其初始容量为225.8 mAh g-1,循环4000次后保持79.1%。相比之下,使用未经处理的锌箔的对应物以180.7 mAh g-1的较低初始容量开始,并且在不到478次循环后失败。该方法改进了ZMAs的前端设计策略,促进了无枝晶ZMAs的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信