Exploring the Complex Interplay of Anisotropies in Magnetosomes of Magnetotactic Bacteria

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
David Gandia, Lourdes Marcano, Lucía Gandarias, Alicia G. Gubieda, Ana García-Prieto, Luis Fernández Barquín, Jose Ignacio Espeso, Elizabeth Martín Jefremovas, Iñaki Orue, Ana Abad Diaz de Cerio, Ma Luisa Fdez-Gubieda* and Javier Alonso*, 
{"title":"Exploring the Complex Interplay of Anisotropies in Magnetosomes of Magnetotactic Bacteria","authors":"David Gandia,&nbsp;Lourdes Marcano,&nbsp;Lucía Gandarias,&nbsp;Alicia G. Gubieda,&nbsp;Ana García-Prieto,&nbsp;Luis Fernández Barquín,&nbsp;Jose Ignacio Espeso,&nbsp;Elizabeth Martín Jefremovas,&nbsp;Iñaki Orue,&nbsp;Ana Abad Diaz de Cerio,&nbsp;Ma Luisa Fdez-Gubieda* and Javier Alonso*,&nbsp;","doi":"10.1021/acsomega.4c0937110.1021/acsomega.4c09371","DOIUrl":null,"url":null,"abstract":"<p >Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, <i>Magnetovibrio blakemorei</i> and <i>Magnetospirillum gryphiswaldense</i> MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe<sub>3</sub>O<sub>4</sub>) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with <i>M. blakemorei</i> exhibiting ∼25 kJ/m<sup>3</sup> and <i>M. gryphiswaldense</i> ∼ 11 kJ/m<sup>3</sup>. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (<i>M</i> vs <i>T</i>, 5 mT) and magnetic field (<i>M</i> vs μ<sub>0</sub><i>H</i>, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for <i>M. blakemorei</i> by up to twofold compared to <i>M. gryphiswaldense</i>. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner–Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22–24 kJ/m<sup>3</sup> at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 16","pages":"16061–16072 16061–16072"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09371","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09371","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ∼25 kJ/m3 and M. gryphiswaldense ∼ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs μ0H, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner–Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22–24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.

趋磁细菌磁小体各向异性复杂相互作用的探索
趋磁细菌(MTB)是生物物理学应用的前沿,特别是在癌症治疗方面。这些细菌生物矿化的磁小体是高质量的磁性纳米颗粒,通过高度可复制的自然驱动过程在MTB内部形成链。特别是,黑氏磁弧菌和gryphiswaldense磁螺旋藻MTB表现出不同的磁小体形态:分别为截断的六八面体和立方体形状。尽管具有相同的成分(磁铁矿,Fe3O4)和尺寸在相似的尺寸范围内,但它们的有效单轴各向异性在室温下显着不同,M. blakemorei和M. gryphiswaldense表现为~ 25 kJ/m3和~ 11 kJ/m3。这种突出的各向异性差异为探索磁各向异性在这些磁铁矿基纳米颗粒的磁响应中的作用提供了独特的机会。本研究通过检测静态磁化强度与温度(M vs T, 5 mT)和磁场(M vs μ0H,高达1 T)的关系,系统地研究了这些响应。在Verwey转变温度(~ 110 K)以上,有效各向异性主要由形状各向异性贡献,与M. gryphiswaldense相比,M. blakemorei的矫顽力增加了两倍。然而,在此温度以下,有效的单轴各向异性以非单调的方式迅速增加,显著改变了磁性行为。使用动态Stoner-Wohlfarth模型的计算模拟提供了对这些现象的见解,从而能够仔细解释实验数据。根据我们的模拟,在Verwey温度以下,单轴磁晶贡献逐渐出现,在5k时达到峰值约22-24 kJ/m3。我们的研究揭示了磁晶贡献的复杂演化,它主导了磁小体在韦氏温度下的磁响应。这证明了各向异性特性对磁铁矿基纳米颗粒的磁性行为和应用的深远影响,并突出了磁小体作为研究磁铁矿基纳米颗粒中各向异性复杂相互作用的理想模型系统的特殊效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信